www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorräume-Übergangsmatrizen
Vektorräume-Übergangsmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume-Übergangsmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Do 19.01.2006
Autor: SirBigMac

Aufgabe
Sei z = a+ib [mm] \in \IC. [/mm] Zeigen Sie, dass z, zi genau dann eine Basis des  [mm] \IR-Vektorraums [/mm]
[mm] \IC [/mm] ist, wenn z [mm] \not= [/mm] 0. Berechnen Sie dann für z [mm] \not= [/mm] 0 die Übergangsmatrix des
Basiswechsels von (z, zi) nach (1, i).

Ich versteh die Aufgabe leider nicht!
Was ist denn da überhaupt verlangt? Wir haben in der Vorlesung in Linearer Algebra noch nichts mit den komplexen Zahlen gerechnet. Die kenn ich bisher nur aus Analysis und leider nicht im Zusammenhang mit Matrizen.
Ich glaub irgendwie steh ich da grad auf dem Schlauch...

Wär toll wenn mir jemand ein paar Tipps geben könnte wie ich die Aufgabe lösen kann!

Lg SirBigMac

        
Bezug
Vektorräume-Übergangsmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Fr 20.01.2006
Autor: Julius

Hallo!

Du kannst den reellen Vektorraum [mm] $\IC$ [/mm] ja als [mm] $\IR^2$ [/mm] auffassen, via der Isomorphie

$a+ib [mm] \mapsto \pmat{a \\ b}$. [/mm]

Du musst also im Wesentlichen zeigen, dass im Falle $a [mm] \ne [/mm] 0 [mm] \ne [/mm] b$ auch

[mm] $\left\{ \pmat{a \\ b}, \pmat{-b \\ a} \right\}$ [/mm]

eine Basis des [mm] $\IR^2$ [/mm] ist und die Basiswechselmatrix zur Basis

[mm] $\left\{ \pmat{1 \\ 0}, \pmat{0 \\ 1} \right\}$ [/mm]

berechnen.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]