Vektorielles Dreieck im R^3 < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben:
Punkte:
A=(0,0,0), B=(0,5,0), Länge Hypothenuse c=5cm
Somit ist [mm] \vec{v_{1}}=\vektor{0 \\ 0 \\ 0} [/mm] + [mm] s\*\vektor{0 \\ 5 \\ 0}. [/mm] Ausserdem sei der zweite Vektor [mm] \vec{v_{2}}=\vektor{0 \\ 5 \\ 0} [/mm] + [mm] t\*\vektor{-1/2 \\ 4 \\ 3}. [/mm]
Winkel [mm] \alpha [/mm] bei A=25 Grad
Winkel [mm] \beta [/mm] bei B ~ 36,657 Grad (von mir berechnet, Winkel xy-Ebene und [mm] v_2)
[/mm]
Dadurch ist auch Winkel [mm] \gamma [/mm] gegeben: 180 Grad - 25 Grad - 36,657 Grad = 118.343 Grad
Gesucht:
Vektor [mm] \vec{v_{3}}=\vektor{0 \\ 0 \\ 0} [/mm] + [mm] u\*\vektor{v_{3}_x \\ v_{3}_y \\ v_{3}_z} [/mm] und sein Schnittpunkt C mit [mm] \vec{v_{2}}. [/mm] |
Hallo,
ich möchte gern folgendes Problem lösen:
Zu einem unvollständigen vektoriellen Dreieck im [mm] R^3 [/mm] sind zwei Seiten in Form von parametrisierten Vektoren gegeben. Weiter sind alle Winkel bekannt bzw. gegeben.
Gesucht ist der fehlende 3. Vektor bzw. sein Schnittpunkt mit Vektor 2.
Mein Lösungsansatz sah folgendermassen aus:
1) Berechnung der Länge von [mm] \vec{v_{3}} [/mm] mittels Sinussatz: | [mm] \vec{v_{3}}| [/mm] = [mm] \bruch{c}{sin(\gamma)} \* sin(\beta)
[/mm]
2) Berechnung des Richtungsvektors von v3 mit Richtungskosinus: [mm] v3_x [/mm] = |v3| [mm] \* [/mm] cos (Winkel zur x-Achse)
Bei 2) ist mir dann aufgefallen, dass mein Ansatz nicht funktioniert, weil mir der Winkel zwischen gesuchtem [mm] \vec{v_{3}} [/mm] und x-Achse ja unbekannt ist [mm] \Rightarrow [/mm] Ansatz ist für die Tonne.
Für kreative Ideen wäre ich sehr dankbar!
Edit:
Mir ist gestern noch aufgefallen, dass ich für [mm] \beta [/mm] den falschen Winkel berechnet habe. Richtig ist natürlich der Winkel innerhalb des Dreiecks, also zwischen [mm] \vec{v_{1}} [/mm] und [mm] \vec{v_{2}} [/mm] und nicht der zwischen xy-Ebene und [mm] \vec{v_{2}} [/mm] .
Der Winkel [mm] \beta [/mm] zwischen [mm] \vec{v_{1}} [/mm] und [mm] \vec{v_{2}} [/mm] beträgt ~37,247 Grad. Somit beträgt der Winkel [mm] \gamma [/mm] bei C ~ 117.753 Grad.
Allerdings hilft mir das bei der Lösung des eigentlichen Problems [mm] (\vec{v_{3}} [/mm] und C bestimmen) irgendwie nicht weiter.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:50 Mo 15.08.2011 | Autor: | abakus |
> Gegeben:
> Punkte:
> A=(0,0,0), B=(0,5,0), Länge Hypothenuse c=5cm
>
> Somit ist [mm]\vec{v_{1}}=\vektor{0 \\ 0 \\ 0}[/mm] + [mm]s\*\vektor{0 \\ 5 \\ 0}.[/mm]
> Ausserdem sei der zweite Vektor [mm]\vec{v_{2}}=\vektor{0 \\ 5 \\ 0}[/mm]
> + [mm]t\*\vektor{-1/2 \\ 4 \\ 3}.[/mm]
>
> Winkel [mm]\alpha[/mm] bei A=25 Grad
> Winkel [mm]\beta[/mm] bei B ~ 36,657 Grad (von mir berechnet,
> Winkel xy-Ebene und [mm]v_2)[/mm]
> Dadurch ist auch Winkel [mm]\gamma[/mm] gegeben: 180 Grad - 25 Grad
> - 36,657 Grad = 118.343 Grad
>
> Gesucht:
> Vektor [mm]\vec{v_{3}}=\vektor{0 \\ 0 \\ 0}[/mm] +
> [mm]u\*\vektor{v_{3}_x \\ v_{3}_y \\ v_{3}_z}[/mm] und sein
> Schnittpunkt C mit [mm]\vec{v_{2}}.[/mm]
> Hallo,
>
> ich möchte gern folgendes Problem lösen:
>
> Zu einem unvollständigen vektoriellen Dreieck im [mm]R^3[/mm] sind
> zwei Seiten in Form von parametrisierten Vektoren gegeben.
> Weiter sind alle Winkel bekannt bzw. gegeben.
> Gesucht ist der fehlende 3. Vektor bzw. sein Schnittpunkt
> mit Vektor 2.
>
> Mein Lösungsansatz sah folgendermassen aus:
>
> 1) Berechnung der Länge von [mm]\vec{v_{3}}[/mm] mittels
> Sinussatz: | [mm]\vec{v_{3}}|[/mm] = [mm]\bruch{c}{sin(\gamma)} \* sin(\beta)[/mm]
>
> 2) Berechnung des Richtungsvektors von v3 mit
> Richtungskosinus: [mm]v3_x[/mm] = |v3| [mm]\*[/mm] cos (Winkel zur x-Achse)
>
> Bei 2) ist mir dann aufgefallen, dass mein Ansatz nicht
> funktioniert, weil mir der Winkel zwischen gesuchtem
> [mm]\vec{v_{3}}[/mm] und x-Achse ja unbekannt ist [mm]\Rightarrow[/mm] Ansatz
> ist für die Tonne.
>
> Für kreative Ideen wäre ich sehr dankbar!
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Hallo,
es wäre hilfreich, die ORIGINALAUFGABE zu posten.
Ich sehe hier leider nicht so richtig, was gegeben ist und was du -richtig oder falsch- dazugedichtet hast. So ist eine Hilfe schwer möglich.
Gruß Abakus
|
|
|
|
|
Es gibt keine Originalaufgabe. Die Fragestellung ist Teil eines groesseren geometrischen Problems, das ich aufs Wesentliche reduziert habe.
Das geometrische Problem besteht darin, einen Loesungsweg zu finden, wie man ein aus Staeben bestehendes Z-Fachwerk in Tetraederform (etwa wie ein Ueberland-Strommast) derart in Etagen unterteilt, dass alle Knoten "gleich" sind, d.h. gleiche Winkel zwischen den sich im Knoten treffenden Staeben besitzen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Di 23.08.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|