www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Vektorfeld konservativ
Vektorfeld konservativ < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld konservativ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Do 08.11.2012
Autor: sissile

Aufgabe
Man zeige dass das Vektorfeld
F(x,y,z) =( cos x sin y - sin x cos z , sin x cos y - sin z siny, cos y cos z - sin z cos x +1)
konservativ ist, und man berechne ein Potential

Hallo,
Ich habe gezeigt dass der Rotor 0 ergibt, reicht dass schon für die Eigenschaft konservativ? Denn im Beweis hatten wir die  Sternförmigkeit vorrausgesetzt, was ich hier nicht weiß, wie ich das überprüfen kann..oder ob ich das vorrausetzen soll..

Lg


        
Bezug
Vektorfeld konservativ: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Do 08.11.2012
Autor: Richie1401

Hallo,

> Man zeige dass das Vektorfeld
>  F(x,y,z) =( cos x sin y - sin x cos z , sin x cos y - sin
> z siny, cos y cos z - sin z cos x +1)
>  konservativ ist, und man berechne ein Potential
>  Hallo,
>  Ich habe gezeigt dass der Rotor 0 ergibt, reicht dass
> schon für die Eigenschaft konservativ?

Das reicht nicht.

> Denn im Beweis
> hatten wir die  Sternförmigkeit vorrausgesetzt, was ich
> hier nicht weiß, wie ich das überprüfen kann..oder ob
> ich das vorrausetzen soll..

Du musst es prüfen. Aber das Vektorfeld ist ja ziemlich harmlos, oder gibt es Punkte, für die das Vektorfeld nicht definiert ist?

>  
> Lg
>  

Ein Vektorfeld v ist konservativ
[mm] \gdw [/mm] der Weg über eine geschlossene Funktion ist 0
[mm] \gdw [/mm] der Wert des Integrales hängt nicht vom Weg, sondern nur vom Start- und Endpunkt ab
[mm] [\gdw [/mm] das Gebiet ist einfach zusammenhängen und es ist [mm] $\text{rot }v=0$] [/mm]

[mm] \\EDIT: [/mm]
Die letzte Äquivalenz sei mit Vorsicht zu genießen (siehe Freds Beitrag).
Das Standardprozedere, was ich (Physiker) kenne und anwende ist in der Tat die Berechnung der Rotation und die Betrachtung des Gebietes. Meist klärt sich schon durch die Berechnung der Rotation, ob das Feld konservativ ist, oder nicht. Dass die Rotation verschwindet ist nämlich notwendig (aber eben nicht hinreichend).

Bezug
                
Bezug
Vektorfeld konservativ: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Do 08.11.2012
Autor: fred97


> Hallo,
>  
> > Man zeige dass das Vektorfeld
>  >  F(x,y,z) =( cos x sin y - sin x cos z , sin x cos y -
> sin
> > z siny, cos y cos z - sin z cos x +1)
>  >  konservativ ist, und man berechne ein Potential
>  >  Hallo,
>  >  Ich habe gezeigt dass der Rotor 0 ergibt, reicht dass
> > schon für die Eigenschaft konservativ?
>  Das reicht nicht.
>  > Denn im Beweis

> > hatten wir die  Sternförmigkeit vorrausgesetzt, was ich
> > hier nicht weiß, wie ich das überprüfen kann..oder ob
> > ich das vorrausetzen soll..
>  Du musst es prüfen. Aber das Vektorfeld ist ja ziemlich
> harmlos, oder gibt es Punkte, für die das Vektorfeld nicht
> definiert ist?
>  >  
> > Lg
>  >  
>
> Ein Vektorfeld v ist konservativ
> [mm]\gdw[/mm] der Weg über eine geschlossene Funktion ist 0
>  [mm]\gdw[/mm] der Wert des Integrales hängt nicht vom Weg, sondern
> nur vom Start- und Endpunkt ab
>  [mm]\gdw[/mm] das Gebiet ist einfach zusammenhängen und es ist
> [mm]\text{rot }v=0[/mm]

Hallo Richie,

die letzte Äquivalenz gefällt mir nicht.

Nimm mal an, wir haben ein konservatives Vektorfeld v auf einem einfach zusammenhängenden Gebiet G. Dann ist [mm]\text{rot }v=0[/mm]

Wenn ich nun v einschränke auf ein nicht einfach zusammenhängendes Teilgebiet G' von G, so müßte nach Deinen Ausführungen v auf G' nicht konservativ sein.


FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]