www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Vektorenproblem
Vektorenproblem < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:34 Do 26.07.2007
Autor: Fillimaus

Aufgabe
O(0/0/0); B(2/1/0); G(1/1/1)

Das Dreieck OBG  ist bei G rechtwinklig.
Ermitteln sie den Umkreismittelpunkt und den Radius des Umkreises.
(Hinweis: Thalesatz)

Hallo, könnt ihr mir bitte bei dieser Aufgabe helfen.
Ich blicke da nicht durch.


Mein Lösungsansatz:

Ich habe zuerst den Mittelpunkt der Seite [mm] \overrightarrow{OB}. [/mm]

[mm] \overrightarrow{m}OB=1/2 [/mm] (o+b)
[mm] =1/2(\vektor{0\\ 0\\0}+\vektor{2 \\ 1\\0}) [/mm]
[mm] =\vektor{1 \\ 0,5\\0} [/mm]

Davon habe ich den Betrag genommen um auf den Radius zu kommen.

[mm] |\overrightarrow{m}OB|=\wurzel{2}1²+0,5²+0² [/mm]
[mm] r=\wurzel{2}1,25LE [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.
Hallo, könnt ihr mir bitte bei dieser Aufgabe helfen.
Ich blicke da nicht durch.

mfG
Fillimaus

        
Bezug
Vektorenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Do 26.07.2007
Autor: rabilein1

Der Mittelpunkt des Umkreises ist doch von allen drei Punkten O, B und G gleichweit entfernt.

Du könntest nun 1.) die Gerade ermitteln, die in der Ebene OBG liegt und deren Punkte von O und B den gleichen Abstand haben. Den ersten Schritt dazu mit dem Mittelpunkt hast du ja schon gemacht.

Als 2.) machst du das gleiche für B und G.

Und wo sich dann diese beiden Geraden schneiden, das ist dann der Mittelpunkt.

Wenn du diesen Mittelpunkt hast, dann musst du nur noch den Abstand zu einem der Punkte O, B oder G ausrechnen.


Es gibt ja immer mehrere Möglichkeiten, die zur Lösung führen. "Thaleskreis" mag auch eine davon sein.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]