www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektoren unter Bedingungen fin
Vektoren unter Bedingungen fin < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren unter Bedingungen fin: Winkelfunktion?
Status: (Frage) beantwortet Status 
Datum: 17:58 So 07.11.2004
Autor: Reaper

geg.: Finden Sie alle Vektoren der Länge  [mm] \wurzel{2}, [/mm] die senkrecht auf den Vektor (1,0,-2) stehen und mit dem Vektor (1,0,1) den Winkel 60 Grad einschließen.
Ich blicke bei dem Beispiel überhaupt nicht druch. Geht das wieder mit Winkelfunktionen oder ganz anders?

        
Bezug
Vektoren unter Bedingungen fin: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 Mo 08.11.2004
Autor: Marc

Hallo Reaper,

> geg.: Finden Sie alle Vektoren der Länge  [mm]\wurzel{2},[/mm] die
> senkrecht auf den Vektor (1,0,-2) stehen und mit dem Vektor
> (1,0,1) den Winkel 60 Grad einschließen.

Nehme dir eine Darstellung eines Vektors [mm] $\vektor{x\\y\\z}$ [/mm] her und formuliere die gegebenen Bedingungen mathematisch:

I) Länge [mm] $\wurzel{2}$: $\vmat{\vektor{x\\y\\z}}=\wurzel{2}$ $\gdw$ $\wurzel{x^2+y^2+z^2}=\wurzel{2}$ $\gdw$ $x^2+y^2+z^2=2$. [/mm]

II) Senkrecht auf dem Vektor [mm] $\vektor{1\\0\\-2}$ [/mm] bedeutet: [mm] $0\stackrel{!}{=}\vektor{1\\0\\-2}\*\vektor{x\\y\\z}=x-2z$, [/mm] wobei [mm] $\*$ [/mm] das Skalarprodukt ist.

III) Mit [mm] $\vektor{1\\0\\-2}$ [/mm] einen Winkel von 60° einschließend: [mm] $\cos 60^{\circ}=\bruch{\vektor{1\\0\\1}\*\vektor{x\\y\\z}}{\vmat{\vektor{1\\0\\1}}*\vmat{\vektor{x\\y\\z}}}=\bruch{x+z}{\wurzel{2}*\wurzel{2}}$ [/mm]
Es gilt übrigens [mm] $\cos 60°=\bruch{1}{2}$ [/mm]

Insgesamt erhalten wir diese drei einfachen Gleichungen:

[mm] $x^2+y^2+z^2=2$ [/mm]
$x-2z=0$
$x+z=1$

Das sieht doch schon viel freundlicher und lösbarer aus :-)

Viel Spaß dabei,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]