www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Vektoren: halbierte Diagonalen
Vektoren: halbierte Diagonalen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: halbierte Diagonalen: Bestimmung eines Punkt D
Status: (Frage) beantwortet Status 
Datum: 19:12 Di 27.09.2005
Autor: Saciel

Ich hoffe der Betreff ist ok ^^°

Also ich habe ein Problem mit einer Aufgabe die wahrscheinlich wohl (morgen >.<) in der Klausur dran kommt aber vielleicht habe ich ja Glück und jemand sieht mich bis dahin...

also gegeben ist:
A (3/2/-1) B (-2/0/1) und C (2/3/1)
Aufgabe: Bestimme für das Viereck ABCD den Punkt D...
... sodass die Diagonalen AC und BD einander halbieren.
(Sorry ich weiß nicht wie man die Streckenstriche drüber setzt)

Wir haben also zwei Gleichungen aufgestellt, recht hektisch am Stundenende:
m= a + 1/2 (c - a) und
a-b = 2* (m - b)

Ich habe bei der ersten Formel folgendes herausbekommen:

M= a(3/2/-1) + 1/2 ( (4/3/1) - (3/2/-1))
=> (3/2/-1) + 1/2 (1/1/0)
= (3/2/-1) + (0,5/ 0,5/ 0)
= (3,5/2,5/-1)
__________
__________

bei der zweiten aber folgendes raus:

a-b= (3/2/-1) - (-2/0/1) = (5/2/2)
m - b= (3,5/2,5/-1) - (-2/0/1)
         = (1,5/1,5/2) mal 2
         = (5/ 2,5/2)

also ein 0,5 zu viel....  irgendwas stimmt da nicht.
Könnt ihr mir helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektoren: halbierte Diagonalen: Korrekturen
Status: (Antwort) fertig Status 
Datum: 19:25 Di 27.09.2005
Autor: Loddar

Hallo saciel,

[willkommenmr] !!


> A (3/2/-1) B (-2/0/1) und C (2/3/1)
> Aufgabe: Bestimme für das Viereck ABCD den Punkt D...
> ... sodass die Diagonalen AC und BD einander halbieren.

> (Sorry ich weiß nicht wie man die Streckenstriche drüber setzt)

\overline{AB}  ergibt dann  [mm] $\overline{AB}$ [/mm]

  

> Wir haben also zwei Gleichungen aufgestellt, recht hektisch
> am Stundenende:
> m= a + 1/2 (c - a) und
>  a-b = 2* (m - b)

Diese 2. Gleichung verstehe ich nicht [kopfkratz3] ...

In der 2. Diagonalen müssen doch [mm] $\vec{\red{b}}$ [/mm] und [mm] $\vec{\red{d}}$ [/mm] eingehen - analog zur ersten Gleichung:

[mm] $\vec{m} [/mm] \ = \ [mm] \vec{b} [/mm] + [mm] \bruch{1}{2}*\left(\vec{d}-\vec{b}\right)$ [/mm]

  

> Ich habe bei der ersten Formel folgendes herausbekommen:
>  
> M= a(3/2/-1) + 1/2 ( (4/3/1) - (3/2/-1))
> => (3/2/-1) + 1/2 (1/1/0)

[notok]

[mm] $\overrightarrow{OM} [/mm] \ = \ [mm] \vektor{3 \\ 2 \\-1} [/mm] + [mm] \bruch{1}{2}*\left[\vektor{\red{2} \\ 3 \\ 1} - \vektor{3 \\ 2 \\-1}\right] [/mm] \ = \ [mm] \vektor{3 \\ 2 \\-1} [/mm] + [mm] \bruch{1}{2}*\vektor{2-3 \\ 3-2 \\ 1-(\red{-}1)}\ [/mm] = \ [mm] \vektor{3 \\ 2 \\-1} [/mm] + [mm] \bruch{1}{2}*\vektor{-1 \\ 1 \\ \red{2}} [/mm] \ = \ ...$


Kommst Du nun weiter?

Gruß
Loddar


Bezug
                
Bezug
Vektoren: halbierte Diagonalen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 27.09.2005
Autor: Saciel

Also... nicht so wirklich.

Wo hast du denn die (2/3/1) her?   Die 2. Gleichung bringt mir ja so nichts weil ich den D Vektor ja gar nicht habe sondern erst ausrechnen muss...
Also ich muss ohne D selbst zu verwenden drauf kommen, ich kann ja leider nicht hellsehen :(

Bezug
                        
Bezug
Vektoren: halbierte Diagonalen: Nach d umstellen
Status: (Antwort) fertig Status 
Datum: 19:41 Di 27.09.2005
Autor: Loddar

Hallo Saciel!


> Wo hast du denn die (2/3/1) her?

Das ist doch Dein Punkt $C_$ .


> Die 2. Gleichung bringt
> mir ja so nichts weil ich den D Vektor ja gar nicht habe
> sondern erst ausrechnen muss...

Doch, Du hast doch nun [mm] $\vec{m}$ [/mm] mit der ersten Gleichung ermittelt.

Daher kannst Du doch die 2. Gleichung nach dem gesuchten [mm] $\vec{d}$ [/mm] umstellen und den ermittelten Wert für [mm] $\vec{m}$ [/mm] einsetzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]