www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektoren
Vektoren < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Sa 21.04.2012
Autor: mbau16

Aufgabe
Folgende analytische Form einer Ebenengleichung sei gegeben.

[mm] \underline{E}_{123}=(x-a)8+(y-4a)28+(z-8a)(-52)=\underline{0} [/mm]

[mm] \underline{r_{1}}=\vektor{a \\ 4a \\ 8a} [/mm]

[mm] \underline{r_{2}}=\vektor{7a \\ 6a \\ 10a} [/mm]

[mm] \underline{r_{3}}=\vektor{9a \\ -2a \\ 6a} [/mm]

Ermitteln Sie, ob P4 auf der Ebene liegt!

Hinweis: [mm] \underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right) [/mm]

Hallo zusammen,

um dieser Aufgabe Herr zu werden, benötige ich Eure Hilfe. Als erstes muss ich ja den Punkt [mm] P_{4} [/mm] ermitteln und dann den Punkt in die Ebenengleichung einsetzen. Soweit zur Theorie!

[mm] \underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right) [/mm]

[mm] \underline{r_{4}}=\bruch{1}{5}\left(\vektor{a \\ 4a \\ 8a}+\vektor{7a \\ 6a \\ 10a}+\vektor{9a \\ -2a \\ 6a}\right)=\bruch{1}{5}\vektor{17a \\8a\\24a} [/mm]

[mm] P_{4}=\vektor{\bruch{17}{5}\\ \bruch{8}{5}\\ \bruch{24}{5}}a [/mm]

Ist es denn bis hier richtig, oder seht Ihr schon einen Fehler!

Vielen Dank!

Gruß

mbau16

        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Sa 21.04.2012
Autor: MathePower

Hallo mbau16,

> Folgende analytische Form einer Ebenengleichung sei
> gegeben.
>  
> [mm]\underline{E}_{123}=(x-a)8+(y-4a)28+(z-8a)(-52)=\underline{0}[/mm]
>  
> [mm]\underline{r_{1}}=\vektor{a \\ 4a \\ 8a}[/mm]
>  
> [mm]\underline{r_{2}}=\vektor{7a \\ 6a \\ 10a}[/mm]
>  
> [mm]\underline{r_{3}}=\vektor{9a \\ -2a \\ 6a}[/mm]
>  
> Ermitteln Sie, ob P4 auf der Ebene liegt!
>  
> Hinweis:
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  Hallo zusammen,
>  
> um dieser Aufgabe Herr zu werden, benötige ich Eure Hilfe.
> Als erstes muss ich ja den Punkt [mm]P_{4}[/mm] ermitteln und dann
> den Punkt in die Ebenengleichung einsetzen. Soweit zur
> Theorie!
>  
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\vektor{a \\ 4a \\ 8a}+\vektor{7a \\ 6a \\ 10a}+\vektor{9a \\ -2a \\ 6a}\right)=\bruch{1}{5}\vektor{17a \\8a\\24a}[/mm]
>  
> [mm]P_{4}=\vektor{\bruch{17}{5}\\ \bruch{8}{5}\\ \bruch{24}{5}}a[/mm]
>  
> Ist es denn bis hier richtig, oder seht Ihr schon einen
> Fehler!
>


Bis hierher ist alles richtig. [ok]


> Vielen Dank!
>  
> Gruß
>  
> mbau16


Gruss
MathePower

Bezug
                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Sa 21.04.2012
Autor: mbau16

Hallo nochmal!
>  
> > Folgende analytische Form einer Ebenengleichung sei
> > gegeben.
>  >  
> >
> [mm]\underline{E}_{123}=(x-a)8+(y-4a)28+(z-8a)(-52)=\underline{0}[/mm]
>  >  
> > [mm]\underline{r_{1}}=\vektor{a \\ 4a \\ 8a}[/mm]
>  >  
> > [mm]\underline{r_{2}}=\vektor{7a \\ 6a \\ 10a}[/mm]
>  >  
> > [mm]\underline{r_{3}}=\vektor{9a \\ -2a \\ 6a}[/mm]
>  >  
> > Ermitteln Sie, ob P4 auf der Ebene liegt!
>  >  
> > Hinweis:
> >
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  >  Hallo zusammen,
>  >  
> > um dieser Aufgabe Herr zu werden, benötige ich Eure Hilfe.
> > Als erstes muss ich ja den Punkt [mm]P_{4}[/mm] ermitteln und dann
> > den Punkt in die Ebenengleichung einsetzen. Soweit zur
> > Theorie!
>  >  
> >
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  >  
> > [mm]\underline{r_{4}}=\bruch{1}{5}\left(\vektor{a \\ 4a \\ 8a}+\vektor{7a \\ 6a \\ 10a}+\vektor{9a \\ -2a \\ 6a}\right)=\bruch{1}{5}\vektor{17a \\8a\\24a}[/mm]
>  
> >  

> > [mm]P_{4}=\vektor{\bruch{17}{5}\\ \bruch{8}{5}\\ \bruch{24}{5}}a[/mm]
>  
> >  

> > Ist es denn bis hier richtig, oder seht Ihr schon einen
> > Fehler!
>  >

> Bis hierher ist alles richtig. [ok]

> Gruss
>  MathePower

Okay, dann mach ich weiter! Setze jetzt [mm] P_{4} [/mm] in die Ebenengleichung ein!

[mm] \left(\bruch{17}{5}a-a\right)8+\left(\bruch{8}{5}a-4a\right)28+\left(\bruch{24}{5}a-8a\right)(-52)=\underline_{0} [/mm]

[mm] \bruch{96}{5}a-\bruch{336}{5}a+\bruch{832}{5}a=\underline_{0} [/mm]

So, jetzt weiß ich nicht weiter. Ist das schon der Beweis, dass [mm] P_{4} [/mm] nicht auf der Ebene liegt?

Vielen Dank!

Gruß

mbau16


Bezug
                        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 21.04.2012
Autor: MathePower

Hallo mbau16,

> Hallo nochmal!
>  >  
> > > Folgende analytische Form einer Ebenengleichung sei
> > > gegeben.
>  >  >  
> > >
> >
> [mm]\underline{E}_{123}=(x-a)8+(y-4a)28+(z-8a)(-52)=\underline{0}[/mm]
>  >  >  
> > > [mm]\underline{r_{1}}=\vektor{a \\ 4a \\ 8a}[/mm]
>  >  >  
> > > [mm]\underline{r_{2}}=\vektor{7a \\ 6a \\ 10a}[/mm]
>  >  >  
> > > [mm]\underline{r_{3}}=\vektor{9a \\ -2a \\ 6a}[/mm]
>  >  >  
> > > Ermitteln Sie, ob P4 auf der Ebene liegt!
>  >  >  
> > > Hinweis:
> > >
> >
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  >  >  Hallo zusammen,
>  >  >  
> > > um dieser Aufgabe Herr zu werden, benötige ich Eure Hilfe.
> > > Als erstes muss ich ja den Punkt [mm]P_{4}[/mm] ermitteln und dann
> > > den Punkt in die Ebenengleichung einsetzen. Soweit zur
> > > Theorie!
>  >  >  
> > >
> >
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  >  >  
> > > [mm]\underline{r_{4}}=\bruch{1}{5}\left(\vektor{a \\ 4a \\ 8a}+\vektor{7a \\ 6a \\ 10a}+\vektor{9a \\ -2a \\ 6a}\right)=\bruch{1}{5}\vektor{17a \\8a\\24a}[/mm]
>  
> >  

> > >  

> > > [mm]P_{4}=\vektor{\bruch{17}{5}\\ \bruch{8}{5}\\ \bruch{24}{5}}a[/mm]
>  
> >  

> > >  

> > > Ist es denn bis hier richtig, oder seht Ihr schon einen
> > > Fehler!
>  >  >

> > Bis hierher ist alles richtig. [ok]
>  
> > Gruss
>  >  MathePower
>
> Okay, dann mach ich weiter! Setze jetzt [mm]P_{4}[/mm] in die
> Ebenengleichung ein!
>  
> [mm]\left(\bruch{17}{5}a-a\right)8+\left(\bruch{8}{5}a-4a\right)28+\left(\bruch{24}{5}a-8a\right)(-52)=\underline_{0}[/mm]
>  
> [mm]\bruch{96}{5}a-\bruch{336}{5}a+\bruch{832}{5}a=\underline_{0}[/mm]
>  
> So, jetzt weiß ich nicht weiter. Ist das schon der Beweis,
> dass [mm]P_{4}[/mm] nicht auf der Ebene liegt?
>  


Jetzt mußt Du noch ein Fallunterscheidung für  a machen.

i) [mm]a=0[/mm]
ii) [mm]a \not=0[/mm]


> Vielen Dank!
>  
> Gruß
>  
> mbau16

>


Gruss
MathePower  

Bezug
                                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Sa 21.04.2012
Autor: mbau16

Hallo nochmal!
>  >  >  
> > > > Folgende analytische Form einer Ebenengleichung sei
> > > > gegeben.
>  >  >  >  
> > > >
> > >
> >
> [mm]\underline{E}_{123}=(x-a)8+(y-4a)28+(z-8a)(-52)=\underline{0}[/mm]
>  >  >  >  
> > > > [mm]\underline{r_{1}}=\vektor{a \\ 4a \\ 8a}[/mm]
>  >  >  >  
> > > > [mm]\underline{r_{2}}=\vektor{7a \\ 6a \\ 10a}[/mm]
>  >  >  >  
> > > > [mm]\underline{r_{3}}=\vektor{9a \\ -2a \\ 6a}[/mm]
>  >  >  >  
> > > > Ermitteln Sie, ob P4 auf der Ebene liegt!
>  >  >  >  
> > > > Hinweis:
> > > >
> > >
> >
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  >  >  >  Hallo zusammen,
>  >  >  >  
> > > > um dieser Aufgabe Herr zu werden, benötige ich Eure Hilfe.
> > > > Als erstes muss ich ja den Punkt [mm]P_{4}[/mm] ermitteln und dann
> > > > den Punkt in die Ebenengleichung einsetzen. Soweit zur
> > > > Theorie!
>  >  >  >  
> > > >
> > >
> >
> [mm]\underline{r_{4}}=\bruch{1}{5}\left(\underline{r_{1}}+\underline{r_{2}}+\underline{r_{3}}\right)[/mm]
>  >  >  >  
> > > > [mm]\underline{r_{4}}=\bruch{1}{5}\left(\vektor{a \\ 4a \\ 8a}+\vektor{7a \\ 6a \\ 10a}+\vektor{9a \\ -2a \\ 6a}\right)=\bruch{1}{5}\vektor{17a \\8a\\24a}[/mm]
>  
> >  

> > >  

> > > >  

> > > > [mm]P_{4}=\vektor{\bruch{17}{5}\\ \bruch{8}{5}\\ \bruch{24}{5}}a[/mm]
>  
> >  

> > >  

> > > >  

> > > > Ist es denn bis hier richtig, oder seht Ihr schon einen
> > > > Fehler!
>  >  >  >

> > > Bis hierher ist alles richtig. [ok]
>  >  
> > > Gruss
>  >  >  MathePower
> >
> > Okay, dann mach ich weiter! Setze jetzt [mm]P_{4}[/mm] in die
> > Ebenengleichung ein!
>  >  
> >
> [mm]\left(\bruch{17}{5}a-a\right)8+\left(\bruch{8}{5}a-4a\right)28+\left(\bruch{24}{5}a-8a\right)(-52)=\underline_{0}[/mm]
>  >  
> >
> [mm]\bruch{96}{5}a-\bruch{336}{5}a+\bruch{832}{5}a=\underline_{0}[/mm]
>  >  
> > So, jetzt weiß ich nicht weiter. Ist das schon der Beweis,
> > dass [mm]P_{4}[/mm] nicht auf der Ebene liegt?
>  >  
>
>
> Jetzt mußt Du noch ein Fallunterscheidung für  a machen.
>  
> i) [mm]a=0[/mm]
>  ii) [mm]a \not=0[/mm]

Okay, meinst Du es so?

i)a=0

0=0

Und für ii)

a [mm] \not=0 [/mm]

Wie schreibe ich es hier und was sagt es mir dann? Sorry, kann Dir hier nicht ganz folgen.

> > Vielen Dank!
>  >  
> > Gruß
>  >  
> > mbau16


Bezug
                                        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Sa 21.04.2012
Autor: leduart

Hallo
nur für a=0 liegt der Punkt in der Ebene.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]