www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Vektoranalysis, Kurvenintegral
Vektoranalysis, Kurvenintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoranalysis, Kurvenintegral: Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:40 Sa 16.07.2011
Autor: Nippey

Aufgabe
Sei u(x,y,z) := xyz
Berechnen Sie das Kurvenintegral von [mm] \nabla*u [/mm] längs der folgenden Kurve:

[mm] \gamma(t) [/mm] := [mm] (e^t*cos{t}, e^t*sin{t}, [/mm] 3), [mm] 0<=t<=2\pi [/mm]


Ich habe zu der Aufgabe eine Lösung (von einem Kommilitonen) vorliegen, zu der ich folgende zwei Fragen habe:

Zunächst, ist dieser Lösungsansatz korrekt?
[mm] \int_\gamma{ f*ds } [/mm] := [mm] \int^{2\pi}_0{ f(\gamma(t)) ||d\gamma(t)/dt|| } [/mm]

Das [mm] \nabla*u [/mm] in der Aufgabe bedeutet ja, dass ich u zuvor noch verrechnen muss.
In der Lösung wird nun gesagt, [mm] \nabla*u [/mm] sei:
f = [mm] \nabla*u [/mm] := (yz, xz, xy)

Ich dachte aber, es ist so definiert:
f = [mm] \nabla*u [/mm] := [mm] (du_x/dx, du_z/dz, du_z/dz) [/mm]

Das wären meine beiden Fragen, anschliessend würde ich es weiter selbst versuchen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektoranalysis, Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 16.07.2011
Autor: notinX

Hallo,

> Sei u(x,y,z) := xyz
>  Berechnen Sie das Kurvenintegral von [mm]\nabla*u[/mm] längs der
> folgenden Kurve:
>  
> [mm]\gamma(t)[/mm] := [mm](e^t*cos{t}, e^t*sin{t},[/mm] 3), [mm]0<=t<=2\pi[/mm]
>  Ich habe zu der Aufgabe eine Lösung vorliegen, zu der ich
> folgende zwei Fragen habe:
>  
> Zunächst, ist dieser Lösungsansatz korrekt?
>  [mm]\int_\gamma{ f*ds }[/mm] := [mm]\int^{2\pi}_0{ f(\gamma(t)) ||d\gamma(t)/dt|| }[/mm]

also wenn, dann müsste es so aussehen:
[mm] $\int_{\gamma}f\cdot\mathrm{d}s=\int_{0}^{2\pi}f(\gamma(t))\Vert\dot{\gamma}(t)\Vert\,{\color{red}\mathrm{d}t}$ [/mm]
(Kurvenintegral erster Art)
Aber auch das ist hier der falsche Ansatz, denn [mm] $\nabla [/mm] u$ ist ein Vektorfeld, deshalb ist hier mit dem Kurvenintegral zweiter Art zu rechenn, welches sich im Prinzip nur dadurch von ersten unterscheidet, dass man die Norm weglässt und stattdessen ein Skalarprodukt bildet.


>  
> Das [mm]\nabla*u[/mm] in der Aufgabe bedeutet ja, dass ich u zuvor
> noch verrechnen muss.
>  In der Lösung wird nun gesagt, [mm]\nabla*u[/mm] sei:
>  f = [mm]\nabla*u[/mm] := (yz, xz, xy)
>  
> Ich dachte aber, es ist so definiert:
>  f = [mm]\nabla*u[/mm] := [mm](du_x/dx, du_z/dz, du_z/dz)[/mm]

Was soll denn [mm] $du_x/dx$ [/mm] sein? u ist ein Skalarfeld (eine Abbildung von [mm] $\mathbb{R}^n\to\mathbb{R}$), [/mm] es gibt also keine x-y- und z-Komponente. Der nabla-Operator ist so definiert:
[mm] $\nabla=\left(\begin{array}{c} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y}\\ \frac{\partial}{\partial z}\end{array}\right)$ [/mm]
Dementsprechend ist:
[mm] $\nabla u=\left(\begin{array}{c} \frac{\partial}{\partial x}u\\ \frac{\partial}{\partial y}u\\ \frac{\partial}{\partial z}u\end{array}\right)$ [/mm]

>  
> Das wären meine beiden Fragen, anschliessend würde ich es
> weiter selbst versuchen.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß,

notinX

Bezug
                
Bezug
Vektoranalysis, Kurvenintegral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Sa 16.07.2011
Autor: Nippey

Ah. Jetzt. Ja.
Jetzt seh ich es, vielen Dank für deine Hilfe!

Bezug
                        
Bezug
Vektoranalysis, Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:08 Sa 16.07.2011
Autor: notinX


> Ah. Jetzt. Ja.
>  Jetzt seh ich es, vielen Dank für deine Hilfe!

Gern geschehn :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]