Vektor <-> Funktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
bisher kenne ich Vektoren nur aus dem [mm] R^3.
[/mm]
Vor ein paar Tagen hat unser Dozent mit dem euklidischen Vektorraum angefangen; zu kurz gekommen ist dabei was Vektoren eigentlich mit Funktionen zu tun haben; und wie z.B. zwei Funktionen senkrecht zueinander sein können. Auch warum man das Skalarprodukt anders definieren kann / muss verstehe ich nicht.
Kann mir das jemand kurz und verständlich erklären? Danke im Voraus!
|
|
|
|
Hallo Chris!
Der [mm] $\IR^3$ [/mm] ist ein Spezialfall eines Vektorraums. Ein Vektor ist einfach ein Element einen Vektorraums.
Da auch gewisse Funktionenräume Vektorräume sind (z.B. der Vektorraum der stetigen Funktionen) macht es in diesem Zusammenhang auch Sinn, Funktionen als Vektoren zu bezeichnen.
Bisweilen ist auf einem Vektorraum ein Skalarprodukt definiert. Ein Skalarprodukt ordnet zwei Vektoren einen Skalar (also eine "Zahl") zu.
Im Fall von Funktionenräumen wird so ein Skalarprodukt oft durch ein Integral gegeben. Du kannst z.B. ein Skalarprodukt von $f$ mit $g$ durch
[mm] $\langle f;g\rangle :=\int_0^1 [/mm] f(x)g(x)dx$
definieren.
Voraussetzung ist dabei natürlich, dass dieses Integral existiert.
Man nennt $f$ und $g$ dann orthogonal, wenn [mm] $\langle f;g\rangle=0$ [/mm] gilt.
Leider ist deine Frage ziemlich ungenau, deshalb kann ich dir nicht besser antworten. Um gute Antworten zu bekommen, muss man auch gute Fragen stellen!
Hoffe, dass ich dir dennoch weiterhelfen konnte...
Gruß, banachella
|
|
|
|