www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Variation von Feldern
Variation von Feldern < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variation von Feldern: Nachfrage
Status: (Frage) überfällig Status 
Datum: 20:24 Mo 01.06.2020
Autor: Chris84

Ein Hallo an alle ;)
Ich bin gerade dabei, mein verstaubtes Wissen ueber Feldvariationen aufzufrischen und irgendwie hake ich schon am Anfang.

Genauer gesagt geht es darum, die Identitaet

[mm] $\frac{\delta \Phi(x^{\prime})}{\delta \Phi(x)}=\delta [/mm] (x-x')$

zu verstehen, wobei [mm] $\Phi(x)$ [/mm] eine beliebige, aber (wie in der Physik ueblich), sonst "nette" Funktion ist (stetig, differenzierbar etc.), [mm] $\delta$ [/mm] linkerhand die Variation bezeichnet und [mm] $\delta(x-x')$ [/mm] rechterhand die Deltafunktion bezeichnet (wie in der Physik ueblich rede ich von Deltafunktion, nicht Deltadistribution).

Ich habe angefangen mit [mm] $\Phi(x')=\int [/mm] dx [mm] \Phi(x) \delta [/mm] (x-x')$. Dann

[mm] $\frac{\delta \Phi(x^{\prime})}{\delta \Phi(x)}=\frac{\delta}{\delta \Phi(x)} \int [/mm] dx [mm] \Phi(x) \delta(x-x') [/mm] = [mm] \frac{1}{\delta \Phi(x)} \int [/mm] dx [mm] \left[ \delta\Phi(x) \delta (x-x') + \Phi(x) \delta \delta(x-x') \right]$, [/mm]

wobei ich im letzten Schritt das Variationsdelta ins Integral gezogen habe und die Produktregel verwandt habe.

Daraufhin habe ich fuer den zweiten Summanden die partielle Integration angewandt, d.h.

[mm] $\frac{\delta \Phi(x^{\prime})}{\delta \Phi(x)}= \frac{1}{\delta \Phi(x)} \int [/mm] dx [mm] \left[ \delta\Phi(x) \delta (x-x') + \Phi(x) \delta \delta(x-x') \right] [/mm] = [mm] \frac{\delta \Phi(x^{\prime})}{\delta \Phi(x)}= \frac{1}{\delta \Phi(x)} \int [/mm] dx  [mm] \delta\Phi(x) \delta [/mm] (x-x') + [mm] \Phi(x) \delta(x-x') -\int [/mm] dx [mm] \delta\Phi(x) \delta [/mm] (x-x') = [mm] \frac{\Phi(x) \delta(x-x')}{\delta \Phi(x)} [/mm] $.

Wenn nun am Ende [mm] $\delta \Phi(x)$ [/mm] anstatt [mm] $\Phi(x)$ [/mm] stuende, haette ich das Gewuenschte, aber anscheinent laeuft hier irgendwas falsch.

Wenn einer weiss, wo, oder falls einer ein geeignetes Vorlesungsskript kennt, immer her damit :)

Schoene Gruesse,
Chris





        
Bezug
Variation von Feldern: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 02.07.2020
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]