www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Varianz berechnen
Varianz berechnen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz berechnen: neue Varianz berechnen
Status: (Frage) beantwortet Status 
Datum: 15:25 Mo 11.09.2006
Autor: maki96

Aufgabe
Für 10 beobachtete Daten ergibt sich ein Mittelwert von 20 und eine Varianz von 16. Man berechne denMittelwert und die Varianz, wenn zu den Daten noch eine weitere Boebachtung mit dem Wert 27 dazukommt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dieses Beispiel scheint ganz simpel zu sein, jedoch komm ich nicht dahinter wie man die neue Varianz ausrechnet? Gibts da viell. eine geeignete Formel? Danke für die Hilfe

Der neue Mittelwert ist leicht: (200+27)/11 = 20.6363

        
Bezug
Varianz berechnen: Losung
Status: (Antwort) fertig Status 
Datum: 19:48 Di 12.09.2006
Autor: kiwiaczek

Hallo Maki!

Im Voraus mochte ich mich fur alle Schreibfehler entschuldigen - ich lerne erst Deutsch und dazu habe ich keine deutsche Tastatur :(

Du hast Recht mit dem neuen Mittelwert. Der ist tatsachlich leicht und du kannst es auch durch folgende Umformung berechnen:

[mm]\overline{x}[/mm] - der "alte" Mittelwert, also 20
[mm]\overline{y}[/mm] - der "neue" Mittelwert
[mm]x_{1}[/mm], ..., [mm]x_{n}[/mm] - "alte" beobachtete Daten
[mm]x_{n+1}[/mm] - die "neue" Beobachtung, also 27
n - die Anzahl der bisherigen Beobachtungen, also 10

[mm]\overline{x} = \bruch{x_{1}+...+x_{n}}{n} \qquad \Rightarrow \qquad x_{1}+...+x_{n} = n*\overline{x}[/mm]

[mm]\overline{y} = \bruch{x_{1}+...+x_{n}+x_{n+1}}{n+1} \qquad \Rightarrow \qquad \overline{y} = \bruch{n*\overline{x}+x_{n+1}}{n+1}[/mm]

also:
[mm]\overline{y} = \bruch{10*20+27}{10+1} = \bruch{227}{11} \approx 20,64[/mm]

Um die neue Varianz auszurechnen, braucht man ahnliches Verfahren :-) ...doch die Umformung ist mehr kompliziert :-(

die Zeichen wie vorher, uberdies:
V(X) - die "alte" Varianz, also 16
V(Y) - die "neue" Varianz

[mm]V(X) = \bruch{\summe_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n} = \bruch{(x_{1}-\overline{x})^{2}+...+(x_{n}-\overline{x})^{2}}{n} \qquad \Rightarrow \qquad (x_{1}-\overline{x})^{2}+...+(x_{n}-\overline{x})^{2} = n*V(X)[/mm]

Die Berechnung scheint unkompliziert zu sein, aber ...die "neue" Varianz "basiert" auf dem neuen Mittelwert :(

[mm]V(Y) = \bruch{(x_{1}-\overline{y})^{2}+...+(x_{n}-\overline{y})^{2}+(x_{n+1}-\overline{y})^{2}}{n+1}[/mm]

Wenn man mit 'c' die Differenz [mm]\overline{y}-\overline{x}[/mm] bezeichnet, dann [mm]\overline{y} = \overline{x}+c[/mm] und die Struktur [mm](x_{i}-\overline{y})^{2}[/mm] ist gleich [mm](x_{i}-\overline{x}-c)^{2}[/mm]
[mm]\summe_{i=1}^{n}(x_{i}-\overline{x}-c)^{2} = \summe_{i=1}^{n} x_{i}^{2}+\overline{x}^{2}+c^{2}-2x_{i}c+2\overline{x}c-2x_{i}\overline{x} = \summe_{i=1}^{n} x_{i}^{2}-2x_{i}\overline{x}+\overline{x}^{2}+c^{2}-2c(x_{i}-\overline{x})[/mm]

Das oben sieht verruckt aus, aber die Summe ([mm]\summe_{i=1}^{n}[/mm]) von:
a) [mm]x_{i}^{2}-2x_{i}\overline{x}+\overline{x}^{2} = (x_{i}-\overline{x})^{2}[/mm], also [mm]n*V(X)[/mm]
b) [mm]c^{2}[/mm] ist gleich [mm]n*c^{2}[/mm]
c) [mm]2c(x_{i}-\overline{x})[/mm] ist immer gleich Null

Jetzt ist alles leicht :-)

[mm]V(Y) = \bruch{V(X)*n+n*c^{2}+(x_{n+1}-\overline{y})^{2}}{n+1} \approx 18,6[/mm]

Gruss!
Kiwi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]