www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Varianz
Varianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Do 05.06.2008
Autor: cauchy

Aufgabe
Sei [mm] $X_n$ [/mm] eine gleichverteilte Zufallsvariable mit Werten $-n,...,0,1,...,n$, d. h. [mm] $P(X_n=k)=\bruch{1}{2n+1}$ [/mm] für $k [mm] \in \IZ, [/mm] |k| [mm] \le [/mm] n$. Berechnen Sie den Erwartungswert und die Varianz von [mm] X_n. [/mm]

Ich habe diese Frage in keinem anderen Internetforum gestellt.

Hallo Leute, bei dieser Aufgabe bin ich mir nicht sicher, ob ich die Varianz richtig berechnet habe. Ich bin mir ziemlich sicher, dass [mm] $E(X_n)=0$ [/mm] ist.
Die Varianz habe ich so berechnet:

$$ [mm] V(X_n) [/mm] = [mm] \bruch{1}{2n+1} \* \summe_{i=-n}^{n} (i-0)^2 [/mm] $$

$$ = [mm] \bruch{1}{2n+1} \* [/mm] 2 [mm] \* \summe_{i=1}^{n} i^2 [/mm] $$

$$ = [mm] \bruch{1}{2n+1} \* [/mm] 2 [mm] \* \bruch{n(n+1)(2n+1)}{6} [/mm] $$

$$ = [mm] \bruch{n(n+1)}{3}$$ [/mm]

Ist das richtig? Danke für die Hilfe!! LG, cauchy

        
Bezug
Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Do 05.06.2008
Autor: Somebody


> Sei [mm]X_n[/mm] eine gleichverteilte Zufallsvariable mit Werten
> [mm]-n,...,0,1,...,n[/mm], d. h. [mm]P(X_n=k)=\bruch{1}{2n+1}[/mm] für [mm]k \in \IZ, |k| \le n[/mm].
> Berechnen Sie den Erwartungswert und die Varianz von [mm]X_n.[/mm]
>  Ich habe diese Frage in keinem anderen Internetforum
> gestellt.
>  
> Hallo Leute, bei dieser Aufgabe bin ich mir nicht sicher,
> ob ich die Varianz richtig berechnet habe. Ich bin mir
> ziemlich sicher, dass [mm]E(X_n)=0[/mm] ist.
>  Die Varianz habe ich so berechnet:
>  
> [mm]V(X_n) = \bruch{1}{2n+1} \* \summe_{i=-n}^{n} (i-0)^2[/mm]
>  
> [mm]= \bruch{1}{2n+1} \* 2 \* \summe_{i=1}^{n} i^2[/mm]
>  
> [mm]= \bruch{1}{2n+1} \* 2 \* \bruch{n(n+1)(2n+1)}{6}[/mm]
>  
> [mm]= \bruch{n(n+1)}{3}[/mm]
>  
> Ist das richtig?

Ja, meiner Meinung nach schon.

Bezug
                
Bezug
Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 So 08.06.2008
Autor: cauchy

Danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]