www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Variablentransformation
Variablentransformation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variablentransformation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:25 Mi 16.01.2013
Autor: volk

Hallo,
ich habe eine Funktion [mm] W(r)dr=e^{-(\bruch{r}{r_{0}})^3}d(\bruch{r}{r_{0}})^3 [/mm] und möchte diese nun in Abhängigkeit von [mm] \beta [/mm] haben [mm] \beta=(\frac{r_{0}}{r})^2. [/mm]

Die Vorgehensweise ist mir bekannt, nur komme ich mit dem [mm] d(\bruch{r}{r_{0}})^3 [/mm] nicht klar.
Eigentlich würde ich jetzt erstmal [mm] \beta [/mm] im Exponenten einsetzen und [mm] d(\bruch{r}{r_{0}})^3 [/mm] durch [mm] d\beta [/mm] ausdrücken [mm] (\bruch{d(\bruch{r}{r_{0}})}{d\beta})=-\bruch{1}{2}\beta^{-3/2}. [/mm]

Irgendwie haut das alles aber nicht hin. Ich kriege jedesmal was negatives raus, das Ergebnis ist aber positiv.

Vielleicht kann mir jemand helfen.

Vielen Dank volk

        
Bezug
Variablentransformation: Zusammenhang ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Mi 16.01.2013
Autor: Al-Chwarizmi


> Hallo,
>  ich habe eine Funktion
> [mm]W(r)dr=e^{-(\bruch{r}{r_{0}})^3}d(\bruch{r}{r_{0}})^3[/mm] und
> möchte diese nun in Abhängigkeit von [mm]\beta[/mm] haben
> [mm]\beta=(\frac{r_{0}}{r})^2.[/mm]
>  
> Die Vorgehensweise ist mir bekannt, nur komme ich mit dem
> [mm]d(\bruch{r}{r_{0}})^3[/mm] nicht klar.
> Eigentlich würde ich jetzt erstmal [mm]\beta[/mm] im Exponenten
> einsetzen und [mm]d(\bruch{r}{r_{0}})^3[/mm] durch [mm]d\beta[/mm]
> ausdrücken
> [mm](\bruch{d(\bruch{r}{r_{0}})}{d\beta})=-\bruch{1}{2}\beta^{-3/2}.[/mm]
>  
> Irgendwie haut das alles aber nicht hin. Ich kriege
> jedesmal was negatives raus, das Ergebnis ist aber
> positiv.
>  
> Vielleicht kann mir jemand helfen.
>  
> Vielen Dank volk


Guten Abend,

mir scheint die Schreibweise auch (wenigstens) unklar
und (eindeutig) doof.

Auf den ersten Blick ist mir jedenfalls nicht klar, ob man

dies so:     $\ [mm] \left(d\left(\bruch{r}{r_{0}}\right)\right)^3$ [/mm]

oder so:     $\ [mm] d\left(\left(\bruch{r}{r_{0}}\right)^3\right)$ [/mm]

verstehen soll.

Es wäre deshalb nützlich, wenn du uns den Zusammenhang
angeben würdest, in dem diese Gleichung vorkommt.
Was sind die (physikalischen ?) Bedeutungen von
r , r0 , W und [mm] \beta [/mm]  ?


LG ,   Al-Chwarizmi


Bezug
                
Bezug
Variablentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mi 16.01.2013
Autor: volk


> Guten Abend,

Hallo,
  

> mir scheint die Schreibweise auch (wenigstens) unklar
>  und doof.
>  
> Auf den ersten Blick ist mir jedenfalls nicht klar, ob man
>  
> dies so:     [mm]\ \left(d\left(\bruch{r}{r_{0}}\right)\right)^3[/mm]
>  
> oder so:     [mm]\ d\left(\left(\bruch{r}{r_{0}}\right)^3\right)[/mm]
>  
> verstehen soll.

Das weiß ich leider auch nicht. Das ist eins zu eins so aus einem Buch abgeschrieben.

>  
> Es wäre deshalb nützlich, wenn du uns den Zusammenhang
>  angeben würdest, in dem diese Gleichung vorkommt.
>  Was sind die (physikalischen ?) Bedeutungen von
>  r , r0 , W und  [mm]\beta[/mm] ?

Das ist eine Wahrscheinlichkeit(sfunktion). [mm] r_{0} [/mm] ist eine Einheitslänge, r der Laufindex und [mm] \beta [/mm] gibt das Verhältnis von [mm] (\bruch{r_{0}}{r})^2 [/mm] an.

Ich kann das leider auch nicht mehr zu schreiben, da die Formel plötzlich auftaucht und ich halt [mm] W(\beta) [/mm] benötige. Ich weiß, was rauskommt: [mm] W(\beta)=3/2*\beta^{-5/2}*e^{-\beta^{-3/2}}, [/mm] aber ich würde den Weg auch gerne verstehen.
Eine dritte Ableitung kann es aber eher nicht sein.

>
> LG ,   Al-Chwarizmi
>  

Viele Grüße, volk

Bezug
                        
Bezug
Variablentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 16.01.2013
Autor: leduart

Hallo
offensichtlich ist mit [mm] x=(r/r_0)^3 [/mm]
dein $ [mm] W(r)dr=e^{-(\bruch{r}{r_{0}})^3}d(\bruch{r}{r_{0}})^3 [/mm] $
W(r)dr=e^(-x)dx
und [mm] \beta=x^{-2/3} x=\beta^{-3/2} [/mm]
[mm] dx=-3/2*beta^{-5/2} [/mm]
jetzt x und dx durch [mm] \beta [/mm] und [mm] d\beta [/mm] ersetzen und du hast was du suchst.
verwirrend war nur das $ \ [mm] d\left(\left(\bruch{r}{r_{0}}\right)^3\right) [/mm] $  was eigenartig geschrieben war.

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]