www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Variablentransformation
Variablentransformation < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variablentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:50 Mi 10.11.2010
Autor: snarzhar

Aufgabe
Bei geeigneter Wahl von Modellparametern nimmt die Black-Scholes-Gleichung zur fairen Bewertung europäischer Call-Optionen auf Aktien folgende Form an:

[mm] \begin{cases} \partial_{t}V + \bruch{1}{2}S^{2}V_{SS} + SV_{S} + (- V) = 0, \mbox{ in } R_{+}^{0} × [0, T) \\ V (S, T) = ( S + (-K) )_{+}, S \in R_{+}^{0} \\ V (0, t) = 0. \\ \limes_{S\rightarrow\infty}\bruch{V(S,t)}{S} = 1 \end{cases} [/mm]

Dabei werden Aktienpreis und Zeit durch S bzw. t bezeichnet, V (S, t) gibt
den Preis des Optionsscheins zur Zeit t an, wenn die Aktie den Wert S hat,
und K steht für den Preis, zu dem die Aktie zur Endzeit T bei Ausübung
des Optionsrechts erworben werden darf.
Zeigen Sie, dass unter der Variablentransformation x := ln(S/K), [mm] \varepsilon [/mm] := [mm] \bruch{1}{2}(T [/mm] − t), v(x,  [mm] \varepsilon) [/mm] := V (S,t)
K die Black-Scholes-Gleichung in das Anfangswertproblem
(
[mm] v_{\varepsilon} [/mm] − [mm] v_{xx} [/mm] − [mm] v_{x} [/mm] + 2v = 0 x [mm] \in [/mm] R, [mm] \varepsilon \in [/mm] [0, [mm] \bruch{T}{2} [/mm] )
v(x, 0) = [mm] (e^{x} [/mm] − [mm] 1)_{+} [/mm] x [mm] \in [/mm] R

transformiert wird.


wenn ich wiederum alles einsetze und ableite, komme ich auf

V = K * v

[mm] V_{t} [/mm] = - [mm] \bruch{K}{2}v_{\varepsilon} [/mm]

[mm] V_{S} [/mm] = [mm] \bruch{K^{2}}{S}*v_{x} [/mm]
[mm] V_{SS} [/mm] = [mm] \bruch{K^{3}}{S^{2}}*v_{xx} [/mm]

wenn ich das einsetzte, stören mich aber die K's, mache ich was falsch, oder muss soll man hier noch die Bedingungen, die an V gestellt sind ausnutzen(bei S = 0, ist V(S,t) = 0, und limes geht gegen 1)? Ich komme auf die erwünsche Form, nur eben mit den potenzierten K's vor den Summanden davor.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Variablentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Mi 10.11.2010
Autor: MathePower

Hallo snarzhar,

> Bei geeigneter Wahl von Modellparametern nimmt die
> Black-Scholes-Gleichung zur fairen Bewertung europäischer
> Call-Optionen auf Aktien folgende Form an:
>
> [mm]\begin{cases} \partial_{t}V + \bruch{1}{2}S^{2}V_{SS} + SV_{S} + (- V) = 0, \mbox{ in } R_{+}^{0} × [0, T) \\ V (S, T) = ( S + (-K) )_{+}, S \in R_{+}^{0} \\ V (0, t) = 0. \\ \limes_{S\rightarrow\infty}\bruch{V(S,t)}{S} = 1 \end{cases}[/mm]
>  
> Dabei werden Aktienpreis und Zeit durch S bzw. t
> bezeichnet, V (S, t) gibt
>  den Preis des Optionsscheins zur Zeit t an, wenn die Aktie
> den Wert S hat,
>  und K steht für den Preis, zu dem die Aktie zur Endzeit T
> bei Ausübung
>  des Optionsrechts erworben werden darf.
>  Zeigen Sie, dass unter der Variablentransformation x :=
> ln(S/K), [mm]\varepsilon[/mm] := [mm]\bruch{1}{2}(T[/mm] − t), v(x, 
> [mm]\varepsilon)[/mm] := V (S,t)
>  K die Black-Scholes-Gleichung in das Anfangswertproblem
>  (
>  [mm]v_{\varepsilon}[/mm] − [mm]v_{xx}[/mm] − [mm]v_{x}[/mm] + 2v = 0 x [mm]\in[/mm] R,
> [mm]\varepsilon \in[/mm] [0, [mm]\bruch{T}{2}[/mm] )
>  v(x, 0) = [mm](e^{x}[/mm] − [mm]1)_{+}[/mm] x [mm]\in[/mm] R
>  
> transformiert wird.
>  
> wenn ich wiederum alles einsetze und ableite, komme ich
> auf
>  
> V = K * v
>  
> [mm]V_{t}[/mm] = - [mm]\bruch{K}{2}v_{\varepsilon}[/mm]
>  
> [mm]V_{S}[/mm] = [mm]\bruch{K^{2}}{S}*v_{x}[/mm]


Die Ableitung von [mm]\ln\left(S/K\right)[/mm] lautet:

[mm]\left( \ \ln\left(S/K\right) \ \right)'= \bruch{\left(S/K\right)'}{S/K}=\bruch{1/K}{S/K}=\bruch{1}{S}[/mm]

Damit wird

[mm]V_{S} = \bruch{K}{S}*v_{x}[/mm]

>  [mm]V_{SS}[/mm] = [mm]\bruch{K^{3}}{S^{2}}*v_{xx}[/mm]


Das stimmt nicht.

Formal ist [mm]V_{s}[/mm]:

[mm]V_{S}=K*\bruch{\partial v}{\partial x}\bruch{dx}{ds}[/mm]

Wird das nach S differenziert, so steht da:

[mm]V_{SS}=K*\left(v_{xx}\left(\bruch{dx}{dS}\right)^{2}+v_{x}*\bruch{d^{2}x}{dS^{2}}\right)[/mm]

Daher stimmt das von Dir erhaltene [mm]V_{SS}[/mm] nicht.


>  
> wenn ich das einsetzte, stören mich aber die K's, mache
> ich was falsch, oder muss soll man hier noch die
> Bedingungen, die an V gestellt sind ausnutzen(bei S = 0,
> ist V(S,t) = 0, und limes geht gegen 1)? Ich komme auf die
> erwünsche Form, nur eben mit den potenzierten K's vor den
> Summanden davor.
>  
> Ich habe diese Frage in keinem Forum auf anderen -----
> Internetseiten gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]