www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Vandermonde-Determinante
Vandermonde-Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vandermonde-Determinante: Tipp zum Beweis per Induktion
Status: (Frage) beantwortet Status 
Datum: 19:38 Mi 06.06.2007
Autor: dany1912

Aufgabe
Seien [mm] a_1, a_2, [/mm] ... , [mm] a_n \in\ [/mm] IR, n [mm] \in\ [/mm] IN, n [mm] \ge [/mm] 2 und

[mm] W_n [/mm] = [mm] \begin{vmatrix} 1 & 1 & 1 & ... & 1 \\ a_1 & a_2 & a_3 & ... & a_n\\ a_1^2 & a_2^2 & a_3^2 & ... a_n^2\\ ... & ... & ... & ... \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & ... & a_n^{n-1} \end{vmatrix} [/mm]
Man zeige (Induktion!) :
[mm] W_n [/mm] = [mm] \prod_{i \le j < i \le n} (a_i-a_j) [/mm]  

Hallo liebe Mathematiker!
Ich war in der zugehörigen Übungsstunde leider nicht da, habe also wirklich keinerlei Ahnung, was zu machen ist. Ich hab versucht mich online schon mal schlau zu machen und ähnliche Beweise gefunden, aber da sieht die Determinante immer anders aus, bei den Beweisen ist die erste Spalte komplett gleich 1, nicht die erste Zeile.

Könntet ihr mir nen Tipp geben, wie ich mich an die Aufgabe ranmachen muss? Das wäre echt super! Vielen Dank!

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Vandermonde-Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Mi 06.06.2007
Autor: Somebody

Na, mein Guter: der Wert der Determinante bleibt bei Transposition der Matrix unverändert. Also kannst Du ruhig exakt dieselbe Beweisidee verwenden, die Du bereits gesehen hast. Du musst einfach die Spaltenoperationen durch Zeilenoperationen ersetzen bzw. umgekehrt..

Bezug
                
Bezug
Vandermonde-Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mi 06.06.2007
Autor: dany1912

Danke für die schnelle Antwort!!! (Bin aber eine Gute... *g*)
So, wegen der Aufgabe aber noch mal schnell eine kleine Frage: Die Indizes i und j, wie ist das gemeint? Bzw. mir ist noch unklar, worauf das ganze zielt: Soll dass jetzt eine Vereinfachung zur Berechnung einer Determinante sein? Kann ich diese Formel immer anwenden?


Bezug
                        
Bezug
Vandermonde-Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 06.06.2007
Autor: Somebody

Es ist doch gewiss lustig (und auch durchaus eventuell sogar nützlich), eine derart kompakte Formel für den Wert der Vandermondeschen Determinante (für beliebiges [mm]n[/mm]) zu haben.
Eine einfache praktische Anwendung ist etwa folgende: Sind von einer Polynomfunktion [mm]n-1[/mm]-ten Grades [mm]f(x)[/mm] die Funktionswerte an [mm]n[/mm] Stellen [mm]a_1, a_2, \ldots, a_n[/mm] gegeben, so ist die Determinante des linearen Gleichungssystems, das man aus dieser Information über [mm]f(x)[/mm] für die Koeffizienten der Potenzen von [mm]x[/mm] im Funktionsterm [mm]f(x)[/mm] erhält, gerade eine Vandermondesche Determinante. Also folgt aus der Formel, die Du beweisen sollst, dass das lineare Gleichungssystem für die Koeffizienten von [mm]f(x)[/mm] genau dann regulär ist (also genau eine einzige Lösung hat), wenn die [mm]n[/mm] gegebenen Stellen alle verschieden sind (und genau dann nicht-regulär, aka. singulär, wenn zwei der gegebenen Stellen gleich sind).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]