www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - VR d. Polynome kein Banachraum
VR d. Polynome kein Banachraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VR d. Polynome kein Banachraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Di 08.05.2012
Autor: Schachtel5

Hallo,
das der Vektorraum der Polynome auf [mm] \IR [/mm] P, also [mm] (P(\IR), \parallel [/mm] . [mm] \parallel) [/mm] kein Banachraum ist, sehe ich ein und verstehe die Begründungen, außer die mit dem Satz von Baire, wie wir das im Tutorium hatten. Wir haben [mm] P_n [/mm] den Unterraum mit Polynome vom Grad [mm] \le [/mm] n betrachtet. [mm] P=\bigcup_{n\in \IN}^{}P_n [/mm] . wir haben ein Polynom vom Grad n+1 gefunden, dass beliebig nah an Polynom in [mm] P_n [/mm] liegt, aber ich verstehe nicht, wie man hier mit dem Satz von Baire argumentiert, wieso ist das dann ein Widerspruch zu dem? Ich hoffe, mir kann jemand helfen. Lg

        
Bezug
VR d. Polynome kein Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:35 Di 08.05.2012
Autor: fred97


> Hallo,
> das der Vektorraum der Polynome auf [mm]\IR[/mm] P, also [mm](P(\IR), \parallel[/mm]
> . [mm]\parallel)[/mm] kein Banachraum ist, sehe ich ein und verstehe
> die Begründungen, außer die mit dem Satz von Baire, wie
> wir das im Tutorium hatten. Wir haben [mm]P_n[/mm] den Unterraum mit
> Polynome vom Grad [mm]\le[/mm] n betrachtet. [mm]P=\bigcup_{n\in \IN}^{}P_n[/mm]
> . wir haben ein Polynom vom Grad n+1 gefunden, dass
> beliebig nah an Polynom in [mm]P_n[/mm] liegt, aber ich verstehe
> nicht, wie man hier mit dem Satz von Baire argumentiert,
> wieso ist das dann ein Widerspruch zu dem? Ich hoffe, mir
> kann jemand helfen. Lg


Ich verstehe nicht so recht, wie der von Dir beschriebene Beweis mit dem Satz von Baire gehen soll.

Ich würde es so machen: wir nehmen an, P wäre ein Banachraum. Da die Unterräume [mm] P_n [/mm] endlichdimensional sind, sind sie abgeschlossen. Wegen
$ [mm] P=\bigcup_{n\in \IN}^{}P_n [/mm] $ folgt aus dem Satz von Baire, dass es ein N [mm] \in \IN [/mm] gibt , so dass [mm] P_N [/mm] eine offene Kugel enthält.

Dann ist aber [mm] P_N=P, [/mm] Widerspruch !

Dabei habe ich folgendes Lemma verwendet:

Lemma: Ist X ein normierter Raum und Y ein Unterraum, der eine offene Kugel enthält, so ist Y=X.

Kannst Du dieses Lemma beweisen ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]