www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Urnenproblem
Urnenproblem < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenproblem: Klausurvorbereitung
Status: (Frage) beantwortet Status 
Datum: 02:29 Sa 26.01.2008
Autor: marcsn

Aufgabe
Gegeben seien n+1 Urnen mit jeweils n Kugeln. In der i-ten Urne befinden sich i-1 schwarze Kugeln und n-i+1 weiße Kugeln.
Es wird rein zufällig eine Urne gewählt und daraus rein zufällig eine Kugel gezogen.


a) Wie groß ist die Wkeit eine schwarze Kugel zu ziehen
b) Wie groß ist die bedingte Wkeit, dass Urne i ausgewählt wurde, unter der Bedingung, dass die Kugel schwarz ist.
c)Die gezogene Kugel wird zurückgelegt und es wird noch einmal eine Kugel gezogen. Berechnen sie:
  
   c1)Beide Kugeln sind weiß
   c2)Beide Kugeln sind schwarz
   c3)Eine ist schwarz die andere ist weiß

Hallo zusammen, hoffe es findet sich jemand die mir bei der Aufgabe helfen kann. Ich habe schon was hinbekommen allerdings fehlt mir hier irgendwie noch das Formale was bei der Definition der Ereignisse schon anfängt also:

Sei
X = i-te Urne wird gewählt
S = eine schwarze Kugel wird gezogen


a)[mm]P[S]=\summe_{i=1}^{n+1}P[S,X=i]=\summe_{i=1}^{n+1}\bruch{1}{n+1}\cdot \bruch{i-1}{n}=\bruch{1}{n+1}(\bruch{n(n+1)}{2n})=\bruch{1}{2}[/mm]


b)[mm]P[X=i\mid S]=\bruch{P[S\mid X=i]P[X=i]}{\summe_{k=1}^{n+1}P[S\mid X=k]P[X=k]}=\bruch{\bruch{i-1}{n}\cdot \bruch{1}{n+1}}{\bruch{1}{2}}=2\bruch{i-1}{n(n+1)}[/mm]



So erstmal bis hierhin da ich erstens nicht sicher bin ob ich das überhaupt richtig gemacht habe und zweitens nicht wirklich mit den Formalen Dingen zufrieden bin. Bei c) muss ich ja noch ein Ereignis für die Ziehung einer weißen Kugel unterbringen aber wie drück ich dass dann aus ?


mfg
Marc

        
Bezug
Urnenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Sa 26.01.2008
Autor: luis52

Hallo,
>  
> Sei
> X = i-te Urne wird gewählt
>  S = eine schwarze Kugel wird gezogen
>  
>
> a)[mm]P[S]=\summe_{i=1}^{n+1}P[S,X=i]=\summe_{i=1}^{n+1}\bruch{1}{n+1}\cdot \bruch{i-1}{n}=\bruch{1}{n+1}(\bruch{n(n+1)}{2n})=\bruch{1}{2}[/mm]
>  
>
> b)[mm]P[X=i\mid S]=\bruch{P[S\mid X=i]P[X=i]}{\summe_{k=1}^{n+1}P[S\mid X=k]P[X=k]}=\bruch{\bruch{i-1}{n}\cdot \bruch{1}{n+1}}{\bruch{1}{2}}=2\bruch{i-1}{n(n+1)}[/mm]
>  
>
>
> So erstmal bis hierhin da ich erstens nicht sicher bin ob
> ich das überhaupt richtig gemacht habe

Das hast du prima gemacht, [applaus].


> und zweitens nicht
> wirklich mit den Formalen Dingen zufrieden bin.

Es ist aber besser, $n+1$ Zufallsvariablen [mm] $X_1,\dots,X_{n+1}$ [/mm] einzufuehren.
Dann ergeben auch die Summen mehr Sinn.

> Bei c) muss
> ich ja noch ein Ereignis für die Ziehung einer weißen Kugel
> unterbringen aber wie drück ich dass dann aus ?
>

[mm] $\overline [/mm] S$ (Ueberraschung! ;-))

vg Luis


Bezug
                
Bezug
Urnenproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Sa 26.01.2008
Autor: marcsn

Mal wieder vielen Dank Luis :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]