www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Urnen
Urnen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Fr 22.09.2006
Autor: rachel_hannah

Aufgabe
In n Urnen mit den Nummern 1 bis n werden n Kugeln mit den Nummern 1 bis n zufällig verteilt.
a) Ermittle für n=3 eine Ergebnismenge. Mit welcher Wahrscheinlichkeit bleibt genau eine Urne Leer?
b) Ermittle allgemein die Wahrscheinlichkeit dafür, dass genau eine Urne leer bleibt.
c) Ab welchem n ist die Wahrscheinlichkeit für genau eine leere Urne kleiner als 0,2?
d) Mit welcher Wahrscheinlichkeit bleibt nur die Urne mit der Nummer 1 leer?

Hallo,
Aufgabe a) habe ich schon gelöst, p=2/3
bei der b) habe ich für n=2 auch eine Wahrscheinlichkeit von 1/2, für n=4 aber leider 9/16 und ich weiß nicht wie ich das einfacher als mit Möglichkeiten zählen rausfinden kann. Wielleicht kann mir ja einer von euch weiterhelfen. Ich hatte dann die Idee, dass die Formel [mm] \bruch {(n-1)^{n-2}}{n^{n-2}}sein [/mm] könnte, aber stimmt das und wie beweise ich es
Danke schon mal im Voraus,
Rachel

        
Bezug
Urnen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 21:07 Sa 23.09.2006
Autor: ullim

Ich würde die Aufgabe wie folgt angehen.

Man kann die n Kugeln auf [mm] n^n [/mm] Möglichkeiten verteilen. Beim Verteilen der ersten Kugel hast Du n Möglichkeiten, ebenfalls beim verteilen der zweiten usw. Also gibt es [mm] n^n [/mm] Möglichkeiten insgesamt die Kugeln zu verteilen.

Soll genau eine Urne leer bleiben, bedeutet das, in genau einer Urne liegen 2 Kugeln, in einer keine und in den restlichen jeweils genau eine. Also sieht die Verteilung der Kugeln folgendermaßen aus

Eine Urne             = 0 Kugeln
Eine Urne             = 2 Kugeln
Urne 3 bis Urne n     = 1 Kugel

Die Anzahl der Permutationen dieser Folge beträgt n!

Also ist die Wahrscheinlichkeit das in genau einer Urne keine Kugel liegt [mm] \bruch{n!}{n^n} [/mm] wenn [mm] n\ge2 [/mm] gilt

Für 2 ist das Ergebniss [mm] \bruch{1}{2} [/mm] und für n = 3 ist das Ergebnis [mm] \bruch{2}{9} [/mm] und für n = 4 folgt [mm] \bruch{3}{32} \le [/mm] 0.2

Da [mm] n^n [/mm] schneller steigt als n!, gilt ab n = 4

die Wahrscheinlichkeit, das genau eine Urne keine Kugel enthält, ist kleiner als 0.2.

Die Wahrscheinlichkeit das nur die 1. Urne keine Kugel enthält berechnet sich zu [mm] \bruch{(n-1)!}{n^n} [/mm] weil die erste Urne in die Berechnung der Permutationen nun nicht mehr einbezogen werden darf.

Bezug
                
Bezug
Urnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 So 24.09.2006
Autor: rachel_hannah


> Ich würde die Aufgabe wie folgt angehen.
>  
> Man kann die n Kugeln auf [mm]n^n[/mm] Möglichkeiten verteilen. Beim
> Verteilen der ersten Kugel hast Du n Möglichkeiten,
> ebenfalls beim verteilen der zweiten usw. Also gibt es [mm]n^n[/mm]
> Möglichkeiten insgesamt die Kugeln zu verteilen.
>  
> Soll genau eine Urne leer bleiben, bedeutet das, in genau
> einer Urne liegen 2 Kugeln, in einer keine und in den
> restlichen jeweils genau eine. Also sieht die Verteilung
> der Kugeln folgendermaßen aus
>  
> Eine Urne             = 0 Kugeln
>  Eine Urne             = 2 Kugeln
>  Urne 3 bis Urne n     = 1 Kugel
>  
> Die Anzahl der Permutationen dieser Folge beträgt n!

Wie kommst du darauf?

>  
> Also ist die Wahrscheinlichkeit das in genau einer Urne
> keine Kugel liegt [mm]\bruch{n!}{n^n}[/mm] wenn [mm]n\ge2[/mm] gilt
>  
> Für 2 ist das Ergebniss [mm]\bruch{1}{2}[/mm] und für n = 3 ist das
> Ergebnis [mm]\bruch{2}{9}[/mm] und für n = 4 folgt [mm]\bruch{3}{32} \le[/mm]
> 0.2

[mm] \bruch{2}{9} [/mm] kann soweit ich das Überblicke nicht richtig sein. Den Teil der Aufgabe haben wir in der Schule schon mit unserem Lehrer besprochen und kamen auf [mm] \bruch{2}{3}, [/mm] bei n=4 komme ich mit Hilfe von Bäumchenmalen etc. auch auf [mm] \bruch{144}{256}=\bruch{9}{16} [/mm] und ich bin mir sehr sicher, dass diese Werte richtig sind

>  
> Da [mm]n^n[/mm] schneller steigt als n!, gilt ab n = 4
>  
> die Wahrscheinlichkeit, das genau eine Urne keine Kugel
> enthält, ist kleiner als 0.2.
>  
> Die Wahrscheinlichkeit das nur die 1. Urne keine Kugel
> enthält berechnet sich zu [mm]\bruch{(n-1)!}{n^n}[/mm] weil die
> erste Urne in die Berechnung der Permutationen nun nicht
> mehr einbezogen werden darf.

Das kann eigentlich auch nicht sein, da es für n=3 schon nicht mehr stimmt.
Ich bin in der Zwischenzeit auf [mm] \bruch{(n-1)^n}{n^n }, [/mm] da ich von den n Möglichkeiten in jedem Schritt eine wegnehme, aber die Schritte n mal durchführe.
Ich bräuchte jetzt also nur noch mal Hilfe bei der b).
Vielen Dank für eure Mühe.
Rachel

Bezug
        
Bezug
Urnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Mo 25.09.2006
Autor: kiwiaczek

Hallo rachel_hannah!

Ist Deine Frage noch aktuell?
Ich denke, dass ich b) und d) beantworten koennte; c) muss ich noch ueberlegen.

Gruss, Kiwi

Bezug
                
Bezug
Urnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Mo 25.09.2006
Autor: rachel_hannah

Hi, danke für das Angebot, wir ham die Aufgabe aber heute schon besprochen und auf nen Teil war ich auch gekommen, aber halt net ganz. Nur damit ihr die Antwort findet sofern sie euch interessiert:
p(eine Urne frei) = [mm] \bruch{n(n-1)}{2}*\bruch{n!}{n^n} [/mm]
c ist ja einfaches einsetzen in die Formel, die Bedingung ist bei n = 7 erfüllt und d hatte ich ja schon gesagt.
Aber vielen Dank für euer Bemühen!
Rachel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]