www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum
Untervektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Di 06.08.2013
Autor: Lisa12

Hi, ich hab eine Frage und hoffe ihr könnt mir helfen!
Y soll die Menge aller 2x2 Matrizen sein für die [mm] A^2=A [/mm] gilt. Jetzt soll man prüfen ob Y Untervektorraum ist!
Jetzt hab ich versucht ein Gegenbeispiel zu finden!
Für [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] gilt ja [mm] A^2=A [/mm] also [mm] \in [/mm] Y
Jetzt müsste ja [mm] k*\pmat{ 1 & 0 \\ 0 & 1 } [/mm] auch [mm] \in [/mm] Y sein ABER es ist ja
[mm] (\pmat{ k & 0 \\ 0 & k })^2=\pmat{ k^2 & 0 \\ 0 & k^2 }\not\in [/mm] Y
Denkt ihr das würde reichen?? Oder bin ich auf dem ganz falschen Dampfer und es ist Untervektorraum?

        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Di 06.08.2013
Autor: angela.h.b.


> Hi, ich hab eine Frage und hoffe ihr könnt mir helfen!
> Y soll die Menge aller 2x2 Matrizen sein für die [mm]A^2=A[/mm]
> gilt.
> Jetzt soll man prüfen ob Y Untervektorraum ist!

Hallo,

an dieser Stelle solltest Du schon sagen, wovon es ggf. ein Untervektorraum sein sollte.

Ich denke mal, es ist zu untersuchen, ob es ein Unterraum des [mm] \IR-VRes [/mm] der [mm] 2\times [/mm] 2-Matrizen mit Einträgen aus [mm] \IR [/mm] ist.


> Jetzt hab ich versucht ein Gegenbeispiel zu finden!

Gute Idee.

> Für [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] gilt ja [mm]A^2=A[/mm] also [mm]\in[/mm] Y


Ja.

> Jetzt müsste ja [mm]k*\pmat{ 1 & 0 \\ 0 & 1 }[/mm] auch [mm]\in[/mm] Y sein
> ABER es ist ja
> [mm](\pmat{ k & 0 \\ 0 & k })^2=\pmat{ k^2 & 0 \\ 0 & k^2 }\not\in[/mm]
> Y
> Denkt ihr das würde reichen??

Das k überzeugt nicht.

Gib eine konkrete Zahl an.

Z.B. so:

es ist [mm] E:=\pmat{ 1 & 0 \\ 0 & 1 }\in [/mm] Y,

jedoch ist [mm] 2E\not\in [/mm] Y,

denn [mm] (2E)^2=4E\not=2E. [/mm]



> Oder bin ich auf dem ganz
> falschen Dampfer und es ist Untervektorraum?

Du bist auf dem richtigen Dampfer.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]