www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorräume
Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Spann des R^3
Status: (Frage) beantwortet Status 
Datum: 14:20 Di 29.11.2011
Autor: Domme

Aufgabe
Sei U der Untervektorraum U von [mm] R^3, [/mm] der die beiden Vektoren v:=(1,-1,1) und w:= (2,2,0) enthält, so dass jeder Untervektorraum von [mm] R^3, [/mm] der v und w enthält, auch alle Vektoren von U enthält.

1.) Beschreiben Sie mit Hilfe geeigneter Linearkombinationen die Vektoren von U.
2.) Beweisen Sie, dass v,w und (1,1,1) den [mm] R^3 [/mm] aufspannen.

Zu 1.) kann ich leider nichts sagen weil ich gerade keine Ahnung habe, wie ich das schreiben soll.

Zu 2.) Ich weiß ja schon das (1,1,1) nicht in U enthalten ist, oder mache ich da gerde einen denkfehler? Leider kann ich mit der Informationen nicht mehr weiter was anfangen und sitze damit in der "Sackgasse".

        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Di 29.11.2011
Autor: fred97


> Sei U der Untervektorraum U von [mm]R^3,[/mm] der die beiden
> Vektoren v:=(1,-1,1) und w:= (2,2,0) enthält, so dass
> jeder Untervektorraum von [mm]R^3,[/mm] der v und w enthält, auch
> alle Vektoren von U enthält.
>  
> 1.) Beschreiben Sie mit Hilfe geeigneter
> Linearkombinationen die Vektoren von U.
>  2.) Beweisen Sie, dass v,w und (1,1,1) den [mm]R^3[/mm]
> aufspannen.
>  Zu 1.) kann ich leider nichts sagen weil ich gerade keine
> Ahnung habe, wie ich das schreiben soll.


Ich habs auch zweimal lesen müssen, bis mir klar wurde, was gemeint ist.


Es gilt also:

v,w [mm] \in [/mm] U

und

ist V ein Untervektorraum des [mm] \IR^3 [/mm] mit v,w [mm] \in [/mm] V , ist U [mm] \subseteq [/mm] V.

Damit ist U der kleinste Untervektorraum , der v und w enthält. Folglich besteht U gerade aus den Linearkombinationen von v und w:

                [mm] U=\{rv+sw: r,s \in \IR\} [/mm]

>  
> Zu 2.) Ich weiß ja schon das (1,1,1) nicht in U enthalten
> ist, oder mache ich da gerde einen denkfehler?

Nein

>  Leider kann
> ich mit der Informationen nicht mehr weiter was anfangen
> und sitze damit in der "Sackgasse".

Zeige: v,w und (1,1,1) sind linear unabhängig.

FRED


Bezug
                
Bezug
Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Di 29.11.2011
Autor: Domme

zu 2.) habe das jetzt einmal nachgerechnet und da die Determinante D=4 ist (stimmt´s?) sind v,w und (1,1,1) linear unabhängig und d.h. sie spannen [mm] \IR³ [/mm] auf!
Stimmt das?

Bezug
                        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Di 29.11.2011
Autor: fred97


> zu 2.) habe das jetzt einmal nachgerechnet und da die
> Determinante D=4 ist (stimmt´s?)

Ja

>  sind v,w und (1,1,1)
> linear unabhängig und d.h. sie spannen [mm]\IR³[/mm] auf!
> Stimmt das?

Ja

FRED


Bezug
                        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 29.11.2011
Autor: leduart

Hallo
ja stimmt, wenn ihr gezeigt habt, dass det=0 bedeutet, dass a*v+b*w+c*x=0 nur die lösung a=b=c=0 hat, wenn die det aus v,w,x 0 ist.
Gruss leduart

Bezug
                                
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Di 29.11.2011
Autor: Domme

Vielen Dank für die schnellen Antworten.
Das hat mir sehr geholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]