www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorräume
Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:03 Fr 10.12.2010
Autor: mathestuden

Aufgabe
Seien U,W Untervektorräume eines Vektorrams V. Wann ist [mm] U \cup W[/mm] ein Untervektorraum in V? Wann ist [mm] U \cap W[/mm] ein Untervektorraum von V?

Hallo Leute,

ich habe hierzu folgenden Ansatz: Ich habe einfach die UV-Axiome benutzt.

i) [mm] U \cup W :=\{x \in U \cup W : x \in U \vee x \in W \} [/mm]

1) [mm] U \cup W[/mm] ist nicht leer, da U,W Untervektorräume sind.

2) Für x+x'=x'' muss gelten [mm] U \cup W :=\{x'' \in U \cup W : x'' \in U \vee x'' \in W \} [/mm]

3) Für [mm] \lambda \in K [/mm] muss gelten [mm] U \cup W :=\{\lambda x \in U \cup W : \lambda x \in U \vee \lambda x \in W \} [/mm]



ii) [mm] U \cap W :=\{x \in U \cap W : x \in U \wedge x \in W \} [/mm]

1) Beide Mengen dürfen nicht disjunkt sein.

2) Für x+x'=x'' muss gelten [mm] U \cap W :=\{x'' \in U \cap W : x'' \in U \wedge x'' \in W \} [/mm]

3) Für [mm] \lambda \in K [/mm] muss gelten [mm] U \cap W :=\{\lambda x \in U \cap W : \lambda x \in U \wedge \lambda x \in W \} [/mm]

Stimmt das so?

Schönen Gruß und vielen Dank schon mal im Voraus

Christoph


        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Fr 10.12.2010
Autor: Marcel

Hallo Christoph,

> Seien U,W Untervektorräume eines Vektorrams V. Wann ist [mm]U \cup W[/mm]
> ein Untervektorraum in V? Wann ist [mm]U \cap W[/mm] ein
> Untervektorraum von V?
>  Hallo Leute,
>  
> ich habe hierzu folgenden Ansatz: Ich habe einfach die
> UV-Axiome benutzt.
>  
> i) [mm]U \cup W :=\{x \in U \cup W : x \in U \vee x \in W \}[/mm]
>  
> 1) [mm]U \cup W[/mm] ist nicht leer, da U,W Untervektorräume sind.
>  
> 2) Für x+x'=x'' muss gelten [mm]U \cup W :=\{x'' \in U \cup W : x'' \in U \vee x'' \in W \}[/mm]
>  
> 3) Für [mm]\lambda \in K[/mm] muss gelten [mm]U \cup W :=\{\lambda x \in U \cup W : \lambda x \in U \vee \lambda x \in W \}[/mm]
>  
>
>
> ii) [mm]U \cap W :=\{x \in U \cap W : x \in U \wedge x \in W \}[/mm]
>  
> 1) Beide Mengen dürfen nicht disjunkt sein.
>  
> 2) Für x+x'=x'' muss gelten [mm]U \cap W :=\{x'' \in U \cap W : x'' \in U \wedge x'' \in W \}[/mm]
>  
> 3) Für [mm]\lambda \in K[/mm] muss gelten [mm]U \cap W :=\{\lambda x \in U \cap W : \lambda x \in U \wedge \lambda x \in W \}[/mm]
>  
> Stimmt das so?
>  
> Schönen Gruß und vielen Dank schon mal im Voraus
>  
> Christoph

was willst Du denn nun konstruieren? Ich kenne die Aussage, daher kann ich Dir direkt sagen, was Du beweisen musst:
Genau dann ist $U [mm] \cup [/mm] W$ ein Unterraum, wenn entweder $U [mm] \subseteq [/mm] W$ oder aber $W [mm] \subseteq [/mm] U$ gilt.

Der Beweis ist nicht schwer:
[mm] "$\Leftarrow$" [/mm] ist klar.

Zu [mm] "$\Rightarrow$": [/mm]
Wir nehmen an, dass $U [mm] \cup [/mm] W$ ein Unterraum ist, aber weder $U [mm] \subseteq [/mm] W$ noch $W [mm] \subseteq [/mm] U$ gilt.

Wir wählen $w [mm] \in [/mm] W [mm] \setminus [/mm] U$ und $u [mm] \in [/mm] U [mm] \setminus [/mm] W$ (dabei braucht man obige Annahme).

Was ist nun mit [mm] $w+u\,$? [/mm] Sicherlich ist $w+u [mm] \in [/mm] U [mm] \cup W\,,$ [/mm] weil ja $w [mm] \in [/mm] W [mm] \subseteq [/mm] U [mm] \cup [/mm] W$ und $u [mm] \in [/mm] U [mm] \subseteq [/mm] U [mm] \cup [/mm] W$ und $U [mm] \cup [/mm] W$ ein Unterraum war, nach Voraussetzung. Dann muss also $u+w [mm] \in [/mm] U$ oder $u+w [mm] \in [/mm] W$ gelten (nach Definition von $U [mm] \cup [/mm] W$).

1. Fall:
Angenommen, es wäre $u+w [mm] \in W\,.$ [/mm] Dann gilt aber, weil ja auch $-w [mm] \in [/mm] W$ wegen der UR-Eigenschaft von [mm] $W\,$ [/mm] gilt, sicher
[mm] $$u=u+0=u+(w+(-w))=(u+w)+(-w)\,.$$ [/mm]
Aber nach Annahme von $u+w [mm] \in [/mm] W$ ist wegen $-w [mm] \in [/mm] W$ dann auch $(u+w)+(-w) [mm] \in W\,,$ [/mm] also folgt der Widerspruch $u [mm] \in [/mm] W$ (es war ja $u [mm] \in [/mm] U [mm] \setminus [/mm] W$).

2. Fall:
Angenommen, $u+w [mm] \in V\,.$ [/mm]
.
.
.
(Führe diese Überlegung nun bitte alleine zu Ende durch, soweit es Dir gelingt.)

P.S.:
Buchempfehlung:
Gawronski, Grundlagen der Linearen Algebra. Ich empfehle es, weil es zum einen mMn sehr gut ist, zum anderen mit 2,95 Euro einem auch gerade fast hintergeschmissen wird. (Studientext, Aula-Verlag Wiesbaden.) Dort findest Du die Aufgabe oder den Satz (ob mit Lösung bzw. Beweis, weiß ich gerade nicht).

P.P.S.:
Unterräume sind übrigens nie disjunkt, da das Nullelement des (gemeinsamen) Obervektorraums in jedem Unterraum enthalten ist, d.h. oben:
[mm] $$\{0_V\} \subseteq [/mm] U [mm] \cap W\,.$$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Fr 10.12.2010
Autor: mathestuden

Danke für alles Marcel ich habe es hinbekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]