Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] U_{1}=( \vektor{x \\ y \\z} \in R^3 [/mm] | x=2y)
[mm] U_{2}=( \vektor{x \\ y \\z} \in R^3 [/mm] | x=y)
a) Zeigen sie, U1 und U2 sind Untervektorräume des [mm] R^3.
[/mm]
b)Skizzieren sie U1 u U2 im KO-Syst., überlegen sie zunächst, um welche geometrischen Objekte es sich bei U1, U2 handelt. Welche Vermutung erhalten sie daraus für U1 [mm] \cap [/mm] U2?
c) Zeigen sie, dass [mm] U1+U2=R^3 [/mm] gilt. Ist auch U1 [mm] \otimes U2=R^3? [/mm] Begründen sie ihre Antwort. |
a) Ist kein Problem.
b) ICh denke, dass es sich um zwei ebenen handelt und die Schnittgerade ist die z-Achse. WEnn das stimmt, dann bekomme ich das nicht vernünftig formuliert.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:30 Mo 22.11.2010 | Autor: | Teufel |
Hi!
Ja, es sind 2 Ebenen, die sich in der z-Achse schneiden. Mehr gibt es in der b) nicht zu tun, außer, dass du die beiden Ebenen noch zeichnen musst!
Du kannst auch noch die Schnittgerade als [mm] U_3=\{\vektor{x\\y\\z}\in\IR^3 |x=y=0\} [/mm] schreiben, wenn du willst.
Willst du den Schnitt ohne geometrische Betrachtung herausfinden, musst du [mm] $U_1\cap U_2= \{\vektor{x\\y\\z}\in\IR^3 |x=y und x=2y\}$ [/mm] betrachten und das LGS lösen, was dort steht. Dort kommst du auch auf x=y=0, [mm] z\in\IR [/mm] beliebig.
|
|
|
|