www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Untersuchung einer Funktion
Untersuchung einer Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 16.12.2008
Autor: Uncle_Sam

Aufgabe
geb.: [mm] f_t(x)=\bruch{6x-t}{x^2} [/mm]
ges.: Wendepunkte
Lösung: WP (t/2|8/t)

Hallo, wie komm ich auf die Lösung.
Mein Gedankengang:

[mm] f_t''(x)=0, [/mm] und [mm] f_t'''(x)\not=0 [/mm]

2. Abl = [mm] f_t''(x)=\bruch{-24}{x^3}+\bruch{6*(-t+6x)}{x^4} [/mm]

[mm] x^3 [/mm] und [mm] x^4 [/mm] kürzen sich weg, dann bleibt

0=-24+6(-t+6x)
0=-24-6t+36x
-36x=-24-6t

Das kann irgendwie nicht angehen könnt ihr mir sagen wo der Denkfehler ist.

Mfg
Uncle_Sam

        
Bezug
Untersuchung einer Funktion: falsch umgeformt
Status: (Antwort) fertig Status 
Datum: 17:24 Di 16.12.2008
Autor: Loddar

Hallo Uncle Sam!


> [mm]f_t''(x)=0,[/mm] und [mm]f_t'''(x)\not=0[/mm]
>  
> 2. Abl = [mm]f_t''(x)=\bruch{-24}{x^3}+\bruch{6*(-t+6x)}{x^4}[/mm]

Ich weiß zwar nicht, wie Du auf diese Darstellung der 2. Ableitung gekommen bist ... aber sie scheint zu stimmen.

  

> [mm]x^3[/mm] und [mm]x^4[/mm] kürzen sich weg, dann bleibt

[eek] Wie kürzen?!? Du multiplizierst die Gleichung [mm] $f_t''(x) [/mm] \ = \ 0$ mit [mm] $x^4$ [/mm] und erhältst:

$$0 \ = \ [mm] -24*\red{x}+6*(-t+6x)$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Di 16.12.2008
Autor: Uncle_Sam

Das muss mir einer erklären mit [mm] x^4 [/mm] multiplizieren!
Und wenn den Schritt so weiter denke kommt da [mm] x=\bruch{-t}{2} [/mm] raus, was ja falsch wäre

Bezug
                        
Bezug
Untersuchung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Di 16.12.2008
Autor: Uncle_Sam

der 2. punkt ist ein denkfehler von mir, kommt hin, aber wieso mit [mm] x^4 [/mm] multiplizieren?

Bezug
                        
Bezug
Untersuchung einer Funktion: Hauptnenner
Status: (Antwort) fertig Status 
Datum: 17:43 Di 16.12.2008
Autor: Loddar

Hallo Uncle Sam!


> Das muss mir einer erklären mit [mm]x^4[/mm] multiplizieren!

Weil dies der Hauptnenner der beiden Brüche in folgender Gleichung ist:
$$0 \ = \ [mm] \bruch{-24}{x^3}+\bruch{6\cdot{}(-t+6x)}{x^4}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Untersuchung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Di 16.12.2008
Autor: Uncle_Sam

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]