www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Untersuchung einer Folge
Untersuchung einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung einer Folge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:16 Do 17.06.2010
Autor: Amorosobwh

Aufgabe
Prüfen sie ob die Folge  [mm] $\left(\sum_{k=1}^n\frac{1}{\sqrt{k}}\right)_{n\in N}$ [/mm] monoton fallend, monoton wachsend, nach oben/unten beschränkt, beschränkt bzw. konvergent ist.

Hallo zusammen, habe versucht die Aufgabe zu lösen und ich denke es ist mir gelungen. Bitte guckt euch das nochmal an und korrigiert/nennt/erklärt mir bitte etwaige Fehler. Danke.
Wir betrachten die Folge [mm] $\left(\sum_{k=1}^n\frac{1}{\sqrt{k}}\right)_{n\in N}$. [/mm] Zur Monotonie:

Es gilt:
[mm] \[|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}\] [/mm]
Also ist die Folge monoton wachsend.

Wir prüfen nun die Beschr"anktheit:

[mm] \begin{align*} a_{2^N}&=\sum_{k=1}^{2^N}\frac{1}{\sqrt{k}}=1+\underbrace{\frac{1}{\sqrt{2}}}_{\geq\frac{1}{\sqrt{2}}}+\underbrace{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}}_{\geq\frac{1}{\sqrt{2}}}+...+\underbrace{\frac{1}{\sqrt{2^{N-1}+1}}+...+\frac{1}{\sqrt{2^N-1}}+\frac{1}{\sqrt{2^N}}}_{\geq\frac{1}{\sqrt{2}}}\\ &\geq 1+\frac{1}{\sqrt{2}}N\geq\frac{N}{\sqrt{2}} \end{align*} [/mm]
Zudem gilt [mm] $|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}$. [/mm] Also erf"ullt [mm] $\an$ [/mm] die Bedingung
[mm] \[\forall \epsilon>0\colon\exists n_0\in\LN\colon\forall n\geq n_0\colon |a_{n+1}-a_n|<\epsilon\] [/mm]

Die Abst"ande von konvergenten Gliedern der Folge [mm] $a_n$ [/mm] werden also beliebig klein, d.h.
[mm] \[\lim_{n\rightarrow\infty}(a_{n+1}-a_n)=\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n+1}}=0\], [/mm]
aber [mm] $a_n$ [/mm] ist keine Cauchy-Folge.


        
Bezug
Untersuchung einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Do 17.06.2010
Autor: schachuzipus

Hallo Amorosobwh,

> Prüfen sie ob die Folge  
> [mm]\left(\sum_{k=1}^n\frac{1}{\sqrt{k}}\right)_{n\in N}[/mm]
> monoton fallend, monoton wachsend, nach oben/unten
> beschränkt, beschränkt bzw. konvergent ist.
>  Hallo zusammen, habe versucht die Aufgabe zu lösen und
> ich denke es ist mir gelungen. Bitte guckt euch das nochmal
> an und korrigiert/nennt/erklärt mir bitte etwaige Fehler.
> Danke.
>  Wir betrachten die Folge
> [mm]\left(\sum_{k=1}^n\frac{1}{\sqrt{k}}\right)_{n\in N}[/mm]. Zur
> Monotonie:
>  
> Es gilt:
>  [mm]\[|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}\][/mm]

Wieso nimmst du den Betrag, der ist doch sowieso stets $>0$

Besser "nur" [mm] $a_{n+1}-a_n=\frac{1}{\sqrt{n+1}}>0$ [/mm] ...

>  Also ist die Folge monoton wachsend. [ok]
>  
> Wir prüfen nun die Beschr"anktheit:
>  
> [mm]\begin{align*} a_{2^N}&=\sum_{k=1}^{2^N}\frac{1}{\sqrt{k}}=1+\underbrace{\frac{1}{\sqrt{2}}}_{\geq\frac{1}{\sqrt{2}}}+\underbrace{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}}_{\geq\frac{1}{\sqrt{2}}}+...+\underbrace{\frac{1}{\sqrt{2^{N-1}+1}}+...+\frac{1}{\sqrt{2^N-1}}+\frac{1}{\sqrt{2^N}}}_{\geq\frac{1}{\sqrt{2}}}\\ &\geq 1+\frac{1}{\sqrt{2}}N\geq\frac{N}{\sqrt{2}} \end{align*}[/mm]
>  
> Zudem gilt [mm]|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}[/mm]. Also
> erf"ullt [mm]\an[/mm] die Bedingung
>  [mm]\[\forall \epsilon>0\colon\exists n_0\in\LN\colon\forall n\geq n_0\colon |a_{n+1}-a_n|<\epsilon\][/mm]
>  
> Die Abst"ande von konvergenten Gliedern der Folge

Hää?

> [mm]a_n[/mm]
> werden also beliebig klein, d.h.
> [mm]\[\lim_{n\rightarrow\infty}(a_{n+1}-a_n)=\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n+1}}=0\],[/mm]
>  aber [mm]a_n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist keine Cauchy-Folge.

>  

Der Abstand zweier benachbarter Folgenglieder wird bel. klein, ja.

Zur Beschränktheit: Die Folge ist nicht (nach oben) beschränkt

Mache es indirekt:

Ann.: Doch, dann ex. $M>0$ mit $a_n\le M \ \ \ \forall n\in\IN$

Also $\sum\limits_{k=1}^n\frac{1}{\sqrt k} \ \le \ M$

Aber es ist $\frac{1}{k}\le\frac{1}{\sqrt{k}}$ für alle $k\in\IN$

Also $\sum\limits_{k=1}^n{\frac{1}{k} \ \le \ \sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}} \ \le \ M$

Das würde bedeuten, dass die harmonische Reihe beschränkt wäre, ist sie aber nicht.

Also Widerspruch zur Annahme und $a_n$ (nach oben) unbeschränkt

Damit auch nicht konvergent (die harmonische Reihe ist divergente Minorante)

Habt ihr den Beweis dazu (harmon. Reihe) gemacht?

Stichwort: geschicktes Klammern der Summanden und Abschätzung ...


Wie sieht's mit der Beschränktheit nach unten aus?


Gruß

schachuzipus

Bezug
                
Bezug
Untersuchung einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Do 17.06.2010
Autor: Amorosobwh


>  
> Wieso nimmst du den Betrag, der ist doch sowieso stets [mm]>0[/mm]
> (für [mm]a_{n+1}\neq a_n}[/mm])
>  
> Besser "nur" [mm]a_{n+1}-a_n=\frac{1}{\sqrt{n+1}}>0[/mm] ...
>  
> >  Also ist die Folge monoton wachsend. [ok]

Klar soweit- Danke

> > [mm]\begin{align*} a_{2^N}&=\sum_{k=1}^{2^N}\frac{1}{\sqrt{k}}=1+\underbrace{\frac{1}{\sqrt{2}}}_{\geq\frac{1}{\sqrt{2}}}+\underbrace{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}}_{\geq\frac{1}{\sqrt{2}}}+...+\underbrace{\frac{1}{\sqrt{2^{N-1}+1}}+...+\frac{1}{\sqrt{2^N-1}}+\frac{1}{\sqrt{2^N}}}_{\geq\frac{1}{\sqrt{2}}}\\ &\geq 1+\frac{1}{\sqrt{2}}N\geq\frac{N}{\sqrt{2}} \end{align*}[/mm]
>  
> >  

> > Zudem gilt [mm]|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}[/mm]. Also
> > erf"ullt [mm]\an[/mm] die Bedingung
>  >  [mm]\[\forall \epsilon>0\colon\exists n_0\in\LN\colon\forall n\geq n_0\colon |a_{n+1}-a_n|<\epsilon\][/mm]
>  
> >  

> > Die Abst"ande von konvergenten Gliedern der Folge
>
> Hää?

Mein Dozent hat eine ähnliche Folge auf diese Weise untersucht und ich habe es versucht auf meine Folge zu übertragen...

> > [mm]a_n[/mm]
> > werden also beliebig klein, d.h.
> >
> [mm]\[\lim_{n\rightarrow\infty}(a_{n+1}-a_n)=\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n+1}}=0\],[/mm]
>  >  aber [mm]a_n[/mm] ist keine Cauchy-Folge.
>  >  
>
> Der Abstand zweier benachbarter Folgenglieder wird bel.
> klein, ja.

Auch klar.

> Zur Beschränktheit: Die Folge ist nicht (nach oben)
> beschränkt
>  
> Mache es indirekt:
>  
> Ann.: Doch, dann ex. [mm]M>0[/mm] mit [mm]a_n\le M \ \ \ \forall n\in\IN[/mm]
>  
> Also [mm]\sum\limits_{k=1}^n\frac{1}{\sqrt k} \ \le \ M[/mm]
>  
> Aber es ist [mm]\frac{1}{k}\le\frac{1}{\sqrt{k}}[/mm] für alle
> [mm]k\in\IN[/mm]
>  
> Also [mm]\sum\limits_{k=1}^n{\frac{1}{k} \ \le \ \sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}} \ \le \ M[/mm]
>  
> Das würde bedeuten, dass die harmonische Reihe beschränkt
> wäre, ist sie aber nicht.
>  
> Also Widerspruch zur Annahme und [mm]a_n[/mm] (nach oben)
> unbeschränkt
>  
> Damit auch nicht konvergent (die harmonische Reihe ist
> divergente Minorante)

Reicht das als Beweis zur Konvergenz?

> Habt ihr den Beweis dazu (harmon. Reihe) gemacht?

Nein, aber ich kenne ihn.

> Stichwort: geschicktes Klammern der Summanden und
> Abschätzung ...
>  
>
> Wie sieht's mit der Beschränktheit nach unten aus?

Müsste ja eigentlich nach unten beschränkt sein. Wir haben auch einen Satz dazu, den ich anwenden könnte. Dieser besagt, dass jede monoton wachsende Folge ein Infimum besitzt, also nach unten beschränkt ist.

>
> Gruß
>  
> schachuzipus


Bezug
                        
Bezug
Untersuchung einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Do 17.06.2010
Autor: fred97


> >  

> > Wieso nimmst du den Betrag, der ist doch sowieso stets [mm]>0[/mm]
> > (für [mm]a_{n+1}\neq a_n}[/mm])
>  >  
> > Besser "nur" [mm]a_{n+1}-a_n=\frac{1}{\sqrt{n+1}}>0[/mm] ...
>  >  
> > >  Also ist die Folge monoton wachsend. [ok]

>  Klar soweit- Danke
>  
> > > [mm]\begin{align*} a_{2^N}&=\sum_{k=1}^{2^N}\frac{1}{\sqrt{k}}=1+\underbrace{\frac{1}{\sqrt{2}}}_{\geq\frac{1}{\sqrt{2}}}+\underbrace{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}}_{\geq\frac{1}{\sqrt{2}}}+...+\underbrace{\frac{1}{\sqrt{2^{N-1}+1}}+...+\frac{1}{\sqrt{2^N-1}}+\frac{1}{\sqrt{2^N}}}_{\geq\frac{1}{\sqrt{2}}}\\ &\geq 1+\frac{1}{\sqrt{2}}N\geq\frac{N}{\sqrt{2}} \end{align*}[/mm]
>  
> >  

> > >  

> > > Zudem gilt [mm]|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}[/mm]. Also
> > > erf"ullt [mm]\an[/mm] die Bedingung
>  >  >  [mm]\[\forall \epsilon>0\colon\exists n_0\in\LN\colon\forall n\geq n_0\colon |a_{n+1}-a_n|<\epsilon\][/mm]
>  
> >  

> > >  

> > > Die Abst"ande von konvergenten Gliedern der Folge
> >
> > Hää?
>  
> Mein Dozent hat eine ähnliche Folge auf diese Weise
> untersucht und ich habe es versucht auf meine Folge zu
> übertragen...
>  
> > > [mm]a_n[/mm]
> > > werden also beliebig klein, d.h.
> > >
> >
> [mm]\[\lim_{n\rightarrow\infty}(a_{n+1}-a_n)=\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n+1}}=0\],[/mm]
>  >  >  aber [mm]a_n[/mm] ist keine Cauchy-Folge.
>  >  >  
> >
> > Der Abstand zweier benachbarter Folgenglieder wird bel.
> > klein, ja.
>  
> Auch klar.
>  
> > Zur Beschränktheit: Die Folge ist nicht (nach oben)
> > beschränkt
>  >  
> > Mache es indirekt:
>  >  
> > Ann.: Doch, dann ex. [mm]M>0[/mm] mit [mm]a_n\le M \ \ \ \forall n\in\IN[/mm]
>  
> >  

> > Also [mm]\sum\limits_{k=1}^n\frac{1}{\sqrt k} \ \le \ M[/mm]
>  >  
> > Aber es ist [mm]\frac{1}{k}\le\frac{1}{\sqrt{k}}[/mm] für alle
> > [mm]k\in\IN[/mm]
>  >  
> > Also [mm]\sum\limits_{k=1}^n{\frac{1}{k} \ \le \ \sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}} \ \le \ M[/mm]
>  
> >  

> > Das würde bedeuten, dass die harmonische Reihe beschränkt
> > wäre, ist sie aber nicht.
>  >  
> > Also Widerspruch zur Annahme und [mm]a_n[/mm] (nach oben)
> > unbeschränkt
>  >  
> > Damit auch nicht konvergent (die harmonische Reihe ist
> > divergente Minorante)
>  
> Reicht das als Beweis zur Konvergenz?


Nochmal: die Folge ist divergent, also nicht konvergent !


>  
> > Habt ihr den Beweis dazu (harmon. Reihe) gemacht?
>  
> Nein, aber ich kenne ihn.
>  
> > Stichwort: geschicktes Klammern der Summanden und
> > Abschätzung ...
>  >  
> >
> > Wie sieht's mit der Beschränktheit nach unten aus?
>  
> Müsste ja eigentlich nach unten beschränkt sein. Wir
> haben auch einen Satz dazu, den ich anwenden könnte.
> Dieser besagt, dass jede monoton wachsende Folge ein
> Infimum besitzt, also nach unten beschränkt ist.


Mein Gott, so einen Satz hattet Ihr bestimmt nicht. Ist [mm] (c_n) [/mm] monoton wachsend, also

              [mm] $c_1 \le c_2 \le c_3 \le [/mm] .....$,

so ist doch [mm] (c_n) [/mm] trivialerweise nach unten beschränkt


FRED


>  >

> > Gruß
>  >  
> > schachuzipus
>  


Bezug
                                
Bezug
Untersuchung einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Do 17.06.2010
Autor: Amorosobwh


> > >  

> > > Wieso nimmst du den Betrag, der ist doch sowieso stets [mm]>0[/mm]
> > > (für [mm]a_{n+1}\neq a_n}[/mm])
>  >  >  
> > > Besser "nur" [mm]a_{n+1}-a_n=\frac{1}{\sqrt{n+1}}>0[/mm] ...
>  >  >  
> > > >  Also ist die Folge monoton wachsend. [ok]

>  >  Klar soweit- Danke
>  >  
> > > > [mm]\begin{align*} a_{2^N}&=\sum_{k=1}^{2^N}\frac{1}{\sqrt{k}}=1+\underbrace{\frac{1}{\sqrt{2}}}_{\geq\frac{1}{\sqrt{2}}}+\underbrace{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}}_{\geq\frac{1}{\sqrt{2}}}+...+\underbrace{\frac{1}{\sqrt{2^{N-1}+1}}+...+\frac{1}{\sqrt{2^N-1}}+\frac{1}{\sqrt{2^N}}}_{\geq\frac{1}{\sqrt{2}}}\\ &\geq 1+\frac{1}{\sqrt{2}}N\geq\frac{N}{\sqrt{2}} \end{align*}[/mm]
>  
> >  

> > >  

> > > >  

> > > > Zudem gilt [mm]|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}[/mm]. Also
> > > > erf"ullt [mm]\an[/mm] die Bedingung
>  >  >  >  [mm]\[\forall \epsilon>0\colon\exists n_0\in\LN\colon\forall n\geq n_0\colon |a_{n+1}-a_n|<\epsilon\][/mm]
>  
> >  

> > >  

> > > >  

> > > > Die Abst"ande von konvergenten Gliedern der Folge
> > >
> > > Hää?
>  >  
> > Mein Dozent hat eine ähnliche Folge auf diese Weise
> > untersucht und ich habe es versucht auf meine Folge zu
> > übertragen...
>  >  
> > > > [mm]a_n[/mm]
> > > > werden also beliebig klein, d.h.
> > > >
> > >
> >
> [mm]\[\lim_{n\rightarrow\infty}(a_{n+1}-a_n)=\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n+1}}=0\],[/mm]
>  >  >  >  aber [mm]a_n[/mm] ist keine Cauchy-Folge.
>  >  >  >  
> > >
> > > Der Abstand zweier benachbarter Folgenglieder wird bel.
> > > klein, ja.
>  >  
> > Auch klar.
>  >  
> > > Zur Beschränktheit: Die Folge ist nicht (nach oben)
> > > beschränkt
>  >  >  
> > > Mache es indirekt:
>  >  >  
> > > Ann.: Doch, dann ex. [mm]M>0[/mm] mit [mm]a_n\le M \ \ \ \forall n\in\IN[/mm]
>  
> >  

> > >  

> > > Also [mm]\sum\limits_{k=1}^n\frac{1}{\sqrt k} \ \le \ M[/mm]
>  >  
> >  

> > > Aber es ist [mm]\frac{1}{k}\le\frac{1}{\sqrt{k}}[/mm] für alle
> > > [mm]k\in\IN[/mm]
>  >  >  
> > > Also [mm]\sum\limits_{k=1}^n{\frac{1}{k} \ \le \ \sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}} \ \le \ M[/mm]
>  
> >  

> > >  

> > > Das würde bedeuten, dass die harmonische Reihe beschränkt
> > > wäre, ist sie aber nicht.
>  >  >  
> > > Also Widerspruch zur Annahme und [mm]a_n[/mm] (nach oben)
> > > unbeschränkt
>  >  >  
> > > Damit auch nicht konvergent (die harmonische Reihe ist
> > > divergente Minorante)
>  >  
> > Reicht das als Beweis zur Konvergenz?
>  
>
> Nochmal: die Folge ist divergent, also nicht konvergent !
>  

Meinte ich doch ;-)

> >  

> > > Habt ihr den Beweis dazu (harmon. Reihe) gemacht?
>  >  
> > Nein, aber ich kenne ihn.
>  >  
> > > Stichwort: geschicktes Klammern der Summanden und
> > > Abschätzung ...
>  >  >  
> > >
> > > Wie sieht's mit der Beschränktheit nach unten aus?
>  >  
> > Müsste ja eigentlich nach unten beschränkt sein. Wir
> > haben auch einen Satz dazu, den ich anwenden könnte.
> > Dieser besagt, dass jede monoton wachsende Folge ein
> > Infimum besitzt, also nach unten beschränkt ist.
>  
>
> Mein Gott, so einen Satz hattet Ihr bestimmt nicht. Ist
> [mm](c_n)[/mm] monoton wachsend, also
>  
> [mm]c_1 \le c_2 \le c_3 \le .....[/mm],
>  
> so ist doch [mm](c_n)[/mm] trivialerweise nach unten beschränkt
>  

Ist auch klar. Danke. Haben aber trotzdem so etwas auch als Satz formuliert. Mein Dozent benutzt seeeehhhhr häufig Sätze.

Tim

> FRED
>  
>
> >  >

> > > Gruß
>  >  >  
> > > schachuzipus
> >  


Bezug
                                        
Bezug
Untersuchung einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Do 17.06.2010
Autor: fred97


> > > >  

> > > > Wieso nimmst du den Betrag, der ist doch sowieso stets [mm]>0[/mm]
> > > > (für [mm]a_{n+1}\neq a_n}[/mm])
>  >  >  >  
> > > > Besser "nur" [mm]a_{n+1}-a_n=\frac{1}{\sqrt{n+1}}>0[/mm] ...
>  >  >  >  
> > > > >  Also ist die Folge monoton wachsend. [ok]

>  >  >  Klar soweit- Danke
>  >  >  
> > > > > [mm]\begin{align*} a_{2^N}&=\sum_{k=1}^{2^N}\frac{1}{\sqrt{k}}=1+\underbrace{\frac{1}{\sqrt{2}}}_{\geq\frac{1}{\sqrt{2}}}+\underbrace{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}}_{\geq\frac{1}{\sqrt{2}}}+...+\underbrace{\frac{1}{\sqrt{2^{N-1}+1}}+...+\frac{1}{\sqrt{2^N-1}}+\frac{1}{\sqrt{2^N}}}_{\geq\frac{1}{\sqrt{2}}}\\ &\geq 1+\frac{1}{\sqrt{2}}N\geq\frac{N}{\sqrt{2}} \end{align*}[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > Zudem gilt [mm]|a_{n+1}-a_n|=\frac{1}{\sqrt{n+1}}[/mm]. Also
> > > > > erf"ullt [mm]\an[/mm] die Bedingung
>  >  >  >  >  [mm]\[\forall \epsilon>0\colon\exists n_0\in\LN\colon\forall n\geq n_0\colon |a_{n+1}-a_n|<\epsilon\][/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > Die Abst"ande von konvergenten Gliedern der Folge
> > > >
> > > > Hää?
>  >  >  
> > > Mein Dozent hat eine ähnliche Folge auf diese Weise
> > > untersucht und ich habe es versucht auf meine Folge zu
> > > übertragen...
>  >  >  
> > > > > [mm]a_n[/mm]
> > > > > werden also beliebig klein, d.h.
> > > > >
> > > >
> > >
> >
> [mm]\[\lim_{n\rightarrow\infty}(a_{n+1}-a_n)=\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n+1}}=0\],[/mm]
>  >  >  >  >  aber [mm]a_n[/mm] ist keine Cauchy-Folge.
>  >  >  >  >  
> > > >
> > > > Der Abstand zweier benachbarter Folgenglieder wird bel.
> > > > klein, ja.
>  >  >  
> > > Auch klar.
>  >  >  
> > > > Zur Beschränktheit: Die Folge ist nicht (nach oben)
> > > > beschränkt
>  >  >  >  
> > > > Mache es indirekt:
>  >  >  >  
> > > > Ann.: Doch, dann ex. [mm]M>0[/mm] mit [mm]a_n\le M \ \ \ \forall n\in\IN[/mm]
>  
> >  

> > >  

> > > >  

> > > > Also [mm]\sum\limits_{k=1}^n\frac{1}{\sqrt k} \ \le \ M[/mm]
>  
> >  >  

> > >  

> > > > Aber es ist [mm]\frac{1}{k}\le\frac{1}{\sqrt{k}}[/mm] für alle
> > > > [mm]k\in\IN[/mm]
>  >  >  >  
> > > > Also [mm]\sum\limits_{k=1}^n{\frac{1}{k} \ \le \ \sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}} \ \le \ M[/mm]
>  
> >  

> > >  

> > > >  

> > > > Das würde bedeuten, dass die harmonische Reihe beschränkt
> > > > wäre, ist sie aber nicht.
>  >  >  >  
> > > > Also Widerspruch zur Annahme und [mm]a_n[/mm] (nach oben)
> > > > unbeschränkt
>  >  >  >  
> > > > Damit auch nicht konvergent (die harmonische Reihe ist
> > > > divergente Minorante)
>  >  >  
> > > Reicht das als Beweis zur Konvergenz?
>  >  
> >
> > Nochmal: die Folge ist divergent, also nicht konvergent !
>  >  
>
> Meinte ich doch ;-)
>  
> > >  

> > > > Habt ihr den Beweis dazu (harmon. Reihe) gemacht?
>  >  >  
> > > Nein, aber ich kenne ihn.
>  >  >  
> > > > Stichwort: geschicktes Klammern der Summanden und
> > > > Abschätzung ...
>  >  >  >  
> > > >
> > > > Wie sieht's mit der Beschränktheit nach unten aus?
>  >  >  
> > > Müsste ja eigentlich nach unten beschränkt sein. Wir
> > > haben auch einen Satz dazu, den ich anwenden könnte.
> > > Dieser besagt, dass jede monoton wachsende Folge ein
> > > Infimum besitzt, also nach unten beschränkt ist.
>  >  
> >
> > Mein Gott, so einen Satz hattet Ihr bestimmt nicht. Ist
> > [mm](c_n)[/mm] monoton wachsend, also
>  >  
> > [mm]c_1 \le c_2 \le c_3 \le .....[/mm],
>  >  
> > so ist doch [mm](c_n)[/mm] trivialerweise nach unten beschränkt
>  >  
>
> Ist auch klar. Danke. Haben aber trotzdem so etwas auch als
> Satz formuliert.

Ganz bestimmt nicht !

Ihr hattet vielleicht:

     eine momoton wachsende und nach oben beschränkte Folge besitzt ein Supremum

und

      eine momoton fallende und nach unten beschränkte Folge besitzt ein Infimum

>  Mein Dozent benutzt seeeehhhhr häufig
> Sätze.


Ach, was Du nicht sagst ? Tatsächlich ? Ich dachte immer, dass man in der Mathematik ohne Sätze auskommt ....


FRED

>  
> Tim
>  
> > FRED
>  >  
> >
> > >  >

> > > > Gruß
>  >  >  >  
> > > > schachuzipus
> > >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]