www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Untersuchung auf konvergenz
Untersuchung auf konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung auf konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Mi 05.07.2006
Autor: didi_160

Aufgabe
a) Untersuche die Funktionenfolge [mm] (f_n:[-1,1] \to \IR)_n_ \ge_1 [/mm]  
[mm] f_n(x) [/mm] =  [mm] \summe_{k=1}^{n} \bruch{x^2}{(1+x^2)^k} [/mm] auf
punktweise und gleichmäßige Konvergenz.
    
b) Untersuche die Reihe von Funktionen [0,1] [mm] \to \IR [/mm]
        
  
[mm] \summe_{k=1}^{ \infty} (-1)^k \bruch{x}{(x+k)} [/mm]
    
auf punktweise und absolute Konvergenz.
    
c) Konstruiere eine Folge stetiger Funktionen [mm] f_n:[0,1] \to \IR, [/mm] die punktweise gegen eine stetige Funktion konvergiert,
obwohl   [mm] \limes_{n\rightarrow\infty} max_x_ \in_[_0_,_1_]f_n(x) [/mm]
= [mm] \infty. [/mm]
  

Hi, ich habe zu der Aufgabe einige Fragen:

zu a)
Nachweis der gleichmäßigen Konvergenz: [mm] |f_n(x)-f(x)|< \varepsilon [/mm] ist klar.

Aber Nachweis der punktweisen Konvergenz verstehe ich nicht. In einem Buch habe ich gefunden: [mm] "...|f_n(x)-f(x)|< \varepsilon [/mm] , d.h. für jedes x UND für jedes [mm] \varepsilon [/mm] >o muß es eine natürliche Zahl N geben, sodass für alle n  [mm] \ge [/mm] N gilt [mm] f_n(x)-f(x)|< \varepsilon [/mm] gilt."  Das verstehe ich überhaupt nicht. Was muß ich beim untersuchen auf punktewie Konvergenz anders machen gegenüber Untersuchung auf gleichmäßige Konvergenz???
_________________________________________________
zu c:
Mit dem Ausdruck max... unter dem limes kann ich nichts anfangen.
Ich kann auch nicht erkenne, dass ein Zusammenhang
zwischen Aufg. c) und den Aufg. a) +b) besteht.
___________________________________________________

Bin für jeden Tipp sehr dankbar.
Ich bedanke mich für deine Mühe im Voraus.
  
Viele Grüße didi_160

        
Bezug
Untersuchung auf konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Do 06.07.2006
Autor: PeterB

Zu a)

Gleichmäßige Konvergenz heißt, dass es für alle [mm] \varepsilon>0 [/mm]ein (von x unabhängiges) N gibt, so dass für alle x  und alle n>N [mm] |f(x)-f_n(x)|<\varepsilon [/mm] gilt.
Der Unterschied zur punktweisen Konvergenz ist, das bei dieser das N auch noch von x abhängen darf, das heißt, wenn du ein x und ein [mm] \varepsilon [/mm] vorgibst, dann fidest du ein [mm] N=N(x,\varepsilon) [/mm] so dass für alle n>N gilt: [mm] |f(x)-f_n(x)|<\varepsilon [/mm].

Das ist ein wesentlicher Unterschied, wie die Aufgabe wohl herausstellen soll, offenbar impliziert die gleichmäßige zwar die punktweise Konvergenz, aber nicht umgekehrt.

(Bem: Das definitionsintervall sollte hier offen sein i.e. (-1,1) statt [-1,1], sonst macht die Aufgabe keinen Sinn.)

Zu c) Hier nimmtst du von jedem [mm]f_n [/mm] erst das Maximum [mm] M_n [/mm] über das ganze Intervall (das ist kompakt, daher existiert ein max), und betrachtest dann den Limes der von den [mm] M_n [/mm] gebildeten Folge reeller Zahlen.


Zum lösen von c) werden die anderen Teilaufgaben nicht besonders hilfreich sein, Sinn der Übung ist es Einige Eigenarten der Punktweien Konvergenz heraus zu stellen.

Viele Grüße
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]