Untersuchung Metrischer Raum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:47 Di 10.04.2012 | Autor: | Lustique |
Aufgabe | Sei [mm] $1\leqslant p<\infty$ [/mm] sowie [mm] $n\in \mathbb{N}$. [/mm] Des Weiteren seien [mm] $(X_1, d_1, \dotsc, (X_n,d_n)$ [/mm] metrische Räume. Seien [mm] $X:=X_1\times \dotsm \times X_n$. [/mm]
[mm] $d_p(x,y):=\left(\sum_{i=1}^n d_i(x_i,y_i)^p\right)^{1/p}$
[/mm]
und
[mm] $d_\infty(x,y):=\underset{i=1,\dotsc,n}{\max} d_i(x_i,y_i)$. [/mm]
a) Zeigen Sie, dass [mm] $(X,d_p)$ [/mm] ein metrischer Raum ist.
b) Zeigen Sie, dass Konstanten [mm] $c_1,c_2>0$ [/mm] existieren, so dass
[mm] $c_1 d_\infty(x,y)\leqslant d_p(x,y)\leqslant c_2 d_\infty [/mm] (x,y)$ für alle [mm] $x,y\in [/mm] X$. |
Hallo schon wieder,
Ich glaube a) hat sich erledigt. Ich habe eben die "Summen-Version" der Hölderschen Ungleichung bewiesen (allerdings auch nur, weil ich mir bei einem Beweise im Internet "Anregungen" geholt habe :/ ). Ich denke damit sollte a) dann eigentlich erledigt sein. Bliebe da noch b) und die Frage, ob es für den Nachweis, dass [mm] $(X,d_p)$ [/mm] ein metrischer Raum ist, genügt, zu zeigen, dass [mm] $d_p(x,y)$ [/mm] eine Metrik ist.
zuerst mal zu a):
Ich habe mal wieder ein Problem damit, die Gültigkeit der Dreiecksungleichung nachzuweisen (den Rest habe ich). Zwischenfrage: Reicht es für a) aus zu zeigen, dass [mm] $d_p(x,y)$ [/mm] eine Metrik ist?
Ich hatte zu der Frage mit der Ungleichung zwei Ideen:
Zu zeigen ist ja Folgendes:
[mm] $d_p(x,y)\leqslant d_p(x,z) [/mm] + [mm] d_p(z,y)$, [/mm] also [mm] $\left(\sum_{i=1}^n d_i(x_i,y_i)^p\right)^{1/p}\leqslant \left(\sum_{i=1}^n d_i(x_i,z_i)^p\right)^{1/p} [/mm] + [mm] \left(\sum_{i=1}^n d_i(z_i,y_i)^p\right)^{1/p}$
[/mm]
1. Idee: Einfach beide Seiten "hoch p". Meine Idee dahinter: Beide Seiten sind nichtnegativ und $p>1$, also müsste das ja eine Äquivalenzrelation sein, oder? Ich müsste dann ja eigentlich die rechte Seite mit dem Binomischen Satz auseinanderklamüsern können, so dass da dann sowas steht wie [mm] $\sum_{i=1}^n d_i(x_i,z_i)^p [/mm] + [mm] \sum_{i=1}^n d_i(z_i,y_i)^p [/mm] + [mm] \sum_{k=0}^p \binom{p-1}{k+1} d_i(z_i,y_i)^{p-k-2} d_i(z_i,y_i)^{k+1}$. [/mm] Wäre das so ein möglicher Ansatz? Ich glaube zwar nicht dran, aber wollte das trotzdem mal in den Raum werfen.
2. Idee: Irgendwas mit der Hölderschen/Minkowskischen Ungleichung. Da weiß ich im Moment allerdings nicht, wie ich das genau angehen soll (sind mir irgendwie zu viele Exponenten ).
Oder ginge einfach so etwas wie: [mm] $d_p(x,y)=\left(\sum_{i=1}^n d_i(x_i,y_i)^p\right)^{1/p}\leqslant \left(\sum_{i=1}^n \left(d_i(x_i,z_i)+d_i(z_i,y_i)\right)^p\right)^{1/p}$ [/mm] und dann die Höldersche Ungleichung? Bekannt ist das Ganze nur in der "Produktversion". Die Version mit einer Summe, die hier vorkommt, wurde zwar in der Vorlesung erwähnt, aber nicht bewiesen und stattdessen auf die Übungen verwiesen. Heißt das, ich muss das jetzt beweisen, oder brauche ich das gar nicht?
Ist davon irgendwas praktikabel oder beides Mist und die Lösung viel einfacher?
Zu b):
Da habe ich irgendwie noch so gar keine richtige Idee. Hier wäre ich einfach mal um einen Hinweis froh.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:19 Di 10.04.2012 | Autor: | Marcel |
Hallo Lustique,
> und die Frage, ob es für den Nachweis, dass [mm](X,d_p)[/mm] ein
> metrischer Raum ist, genügt, zu zeigen, dass [mm]d_p(x,y)[/mm] eine
> Metrik ist.
natürlich. Man sagt doch für eine Menge [mm] $X\,$ [/mm] und einer Funktion $d: M [mm] \to \IR$ [/mm] zu dem Paar [mm] $(X,d)\,$ [/mm] genau dann "metrischer Raum", wenn [mm] "$d\,$ [/mm] eine Metrik auf [mm] $X\,$" [/mm] ist (was eine verwirrende Sprechweise sein kann: denn [mm] "$d\,$ [/mm] Metrik auf [mm] $X\,$" [/mm] besagt insbesondere, dass [mm] $d\,$ [/mm] den Definitionsbereich [mm] $X^2=X \times [/mm] X$ hat!), also insbesondere auch $M=X [mm] \times [/mm] X$ gilt.
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:48 Mo 16.04.2012 | Autor: | Lustique |
Ja, alles klar, danke noch mal!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:28 Di 10.04.2012 | Autor: | Denis92 |
Hallo,
zu b)
Warum versuchst du nicht, die Konstanten durch abschätzen beider Seiten näher zu bestimmen?
Du weißt, dass die p-Norm maximal so groß ist, wie
[mm] ((n*max(|x_i-y_i| |i=1,...,n)^p)^{1/p} [/mm]
= [mm] n^{1/p} [/mm] * [mm] max(|x_i-y_o| |i [/mm] = 1,...,n)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:50 Mo 16.04.2012 | Autor: | Lustique |
Ebenfalls noch mal danke dafür! Da hätte ich mir wohl mehr Gedanken zu machen sollen. Letztendlich ist das ja eigentlich trivial.
|
|
|
|