www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Untersuchen der Konvergenz
Untersuchen der Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchen der Konvergenz: Tipp zum Lösen der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:56 So 25.11.2007
Autor: FerrariGirlNr1

Aufgabe
a) Prüfen Sie, für welche x die Reihen
[mm] \summe_{k=0}^{\infty} (-1)^{k} \bruch{x^{2k+1}}{(2k+1)!} [/mm] und [mm] \summe_{k=0}^{\infty} (-1)^{k} \bruch{x^{2k}}{(2k)!} [/mm]
absolut konvergent sind.

b) Schreiben Sie die Summe
s = x + [mm] \bruch{1}{2} \* \bruch{x^{3}}{3} [/mm] + [mm] \bruch{1 \* 3}{2 \* 4} \* \bruch{x^{5}}{5} [/mm] + [mm] \bruch{1 \* 3 \* 5}{2 \* 4 \* 6} \* \bruch{x^{5}}{5} [/mm] + ...
als Reihe, und überprüfen Sie ihre Konvergenz in Abhängigkeit von x.

Zu a)
Ich habe als Tipp bekommen, dass die erste Reihe die reine Entwicklung des Sinus und die zweite die reine Entwicklung des Cosinus ist. Wie mir das genau weiterhelfen soll, weiß ich allerdings nicht.
Löse ich das nun einfach mit Hilfe des Quotientenkriteriums auf und stelle dann auf, dass (da x die einzige Variable ist, die negativ werden kann)wenn |x| < 1 ist, die Reihe konvergent ist oder gibt es noch eine elegantere Lösung?

Zu b)
Das Schreiben der Summe als Reihe ist soweit ja nicht schwer, wenn sich der Bruch ohne Variablen nicht immer um eine weitere Zahl in Zähler und Nenner multiplizieren würde.
Freue mich über jeden Tipp und Anregungen!
Gruß

        
Bezug
Untersuchen der Konvergenz: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 23:56 So 25.11.2007
Autor: Loddar

Hallo FerariGirl!


Quotientenkriterium ist genau der richtige Ansatz.


Gruß
Loddar


Bezug
        
Bezug
Untersuchen der Konvergenz: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 07:08 Mo 26.11.2007
Autor: Loddar

Hallo FerrariGirl!


Ich denke mal, dass hier auch folgende Darstellung für das allgemeine Reihenglied [mm] $a_k$ [/mm] der Reihe $s \ = \ [mm] \summe_{k=0}^{\infty}a_k$ [/mm] zulässig ist:
[mm] $$a_k [/mm] \ = \ [mm] \bruch{1*3*5*...*(2k+1)}{2*4*6*...*(2k)}*\bruch{x^{2k+1}}{2k+1}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]