Unterraum von \IR^{2} < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:21 Di 20.11.2007 | Autor: | timako |
Aufgabe | Es seien [mm] \vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m} [/mm] Vektoren des [mm] \IR^{n} [/mm] für m,n [mm] \in \IN. [/mm] Der von [mm] \vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m} [/mm] erzeugte Kegel ist die Menge:
K = [mm] K(\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m}) [/mm] = [mm] \{\summe_{j=1}^{m}\lambda_{j}\vec{a}_{j} | \lambda_{j}\ge 0 \forall j=1,\ldots,m \}
[/mm]
Untersuchen Sie, ob die von den folgenden Vektoren erzeugten Kegel K einen Untervektorraum von [mm] \IR^{2} [/mm] darstellen:
a) m=2, [mm] \vec{a}_{1}=\vektor{1 \\ 0} \vec{a}_{2}=\vektor{1 \\ 1} [/mm] |
Hallo,
Ist jetzt zu prüfen ob die beiden gegebenen Vektoren die Def. des Kegels erfüllen, dann ist es ein Unterraum von [mm] \IR^{2}? [/mm] Mein Lösungsansatz:
K = [mm] K(\vec{a}_{1}, \vec{a}_{2}) [/mm] = [mm] \lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2} [/mm] = [mm] \lambda_{1}\vektor{1 \\ 0} [/mm] + [mm] \lambda_{2}\vektor{1 \\ 1} [/mm] = [mm] \vektor{\lambda_{1} \\ 0} [/mm] + [mm] \vektor{\lambda_{1} \\ \lambda_{2}} [/mm] = [mm] \vektor{\lambda_{1}+\lambda_{2} \\ \lambda_{2}}
[/mm]
Ist jetzt zu prüfen ob [mm] \lambda_{1}+\lambda_{2} \ge [/mm] 0 und [mm] \lambda_{2} \ge [/mm] 0 sind?
Gemäß Kegeldef. gilt ja [mm] \lambda_{1}, \lambda_{2} \ge [/mm] 0 [mm] \Rightarrow \lambda_{1}+\lambda_{2} \ge [/mm] 0 und natürlich [mm] \lambda_{2} \ge [/mm] 0
Habe ich hiermit die Abgeschlossenheit bzgl. der Addition gezeigt und wie zeige ich die Abgeschlossenheit bzgl. Multiplikation?
Vielen Dank im Voraus,
Timm
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Es seien [mm]\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m}[/mm]
> Vektoren des [mm]\IR^{n}[/mm] für m,n [mm]\in \IN.[/mm] Der von [mm]\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m}[/mm]
> erzeugte Kegel ist die Menge:
>
> K = [mm]K(\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m})[/mm] =
> [mm]\{\summe_{j=1}^{m}\lambda_{j}\vec{a}_{j} | \lambda_{j}\ge 0 \forall j=1,\ldots,m \}[/mm]
>
> Untersuchen Sie, ob die von den folgenden Vektoren
> erzeugten Kegel K einen Untervektorraum von [mm]\IR^{2}[/mm]
> darstellen:
>
> a) m=2, [mm]\vec{a}_{1}=\vektor{1 \\ 0} \vec{a}_{2}=\vektor{1 \\ 1}[/mm]
>
> Hallo,
>
> Ist jetzt zu prüfen ob die beiden gegebenen Vektoren die
> Def. des Kegels erfüllen, dann ist es ein Unterraum von
> [mm]\IR^{2}?[/mm]
Hallo,
nein, ob die Def. des Kegels erfüllt ist, ist nicht zu prüfen.
Du hast zwei Vekoren [mm] \vec{a}_{1} [/mm] und [mm] \vec{a}_{2} [/mm] gegeben,
und sollst den von ihnen erzeugten Kegel betrachten. Einfach betrachten.
Was dieser erzeugte Kegel ist, ist in der Aufgabe definiert, und Du hast das in Deinem Lösungsversuch ja auch schon schön umgesetzt:
K = [mm]K(\vec{a}_{1}, \vec{a}_{2})[/mm] = [mm]\{\lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2} | \lambda_{1}\ge 0, \lambda_{2}\ge 0 \}[/mm].
Du hast bereits herausgefunden, daß alle [mm] \vec{x}\in [/mm] K folgende Gestalt haben:
[mm] \vec{x}=
[/mm]
> = [mm]\vektor{\lambda_{1}+\lambda_{2} \\ \lambda_{2}}[/mm] mit [mm] \lambda_{1}\ge [/mm] 0, [mm] \lambda_{2}\ge [/mm] 0
Hiermit haben wir das Material gesichtet, welches uns zur Verfügung steht.
Die Frage ist nun, ob diese Menge ein Unterraum des [mm] \IR^2 [/mm] ist.
Hierfür müssen wir das passende Werkzeug hervorsuchen, Du hast das bereits getan:
es sind die Unterraumkriterien. Nichtleer ist die Menge offensichtlich, bleiben zu untersuchen
> die Abgeschlossenheit bzgl. der Addition
> die Abgeschlossenheit bzgl. Multiplikation
Du mußt nun schauen, ob für zwei beliebige [mm] \vec{x}, \vec{y} \in [/mm] K auch [mm] \vec{x}+ \vec{y} [/mm] in K liegt, was Du daran feststellen kannst, ob Du die Summe ebenfalls als "positive Linearkombination" v. [mm] \vec{a}_{1}und \vec{a}_{2} [/mm] schreiben kannst.
Für die Abgeschlossenheit bzgl der Multiplikation mit Skalaren mußt Du überlegen, ob für beliebiges [mm] r\in \IR [/mm] das Produkt [mm] r*\vec{x} [/mm] auch im Kegel liegt.
Wenn diese beiden Bedingungen erfüllt sind, ist der Kegel ein UVR des [mm] \IR^2, [/mm] sonst nicht.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:09 Do 22.11.2007 | Autor: | timako |
@ Angela: Erst mal vielen Dank für deine anschauliche Erklärung der Aufgabenstellung, das hat mir sehr geholfen!
Ich habe diese Aufgabe dann wie folgt gelöst und würde mir ein Korrekturlesen eines Boardmitglieds wünschen:
> Du mußt nun schauen, ob für zwei beliebige [mm]\vec{x}, \vec{y} \in[/mm]
> K auch [mm]\vec{x}+ \vec{y}[/mm] in K liegt, was Du daran
> feststellen kannst, ob Du die Summe ebenfalls als "positive
> Linearkombination" v. [mm]\vec{a}_{1}und \vec{a}_{2}[/mm] schreiben
> kannst.
[mm] \vec{x} \in [/mm] K, [mm] \vec{y} \in [/mm] K [mm] \Rightarrow \vec{x}+\vec{y} \in [/mm] K?
[mm] \vec{x}= \lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2} [/mm] , [mm] \vec{y}= \lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2}
[/mm]
[mm] \vec{x}+ \vec{y} [/mm] = [mm] \lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2} [/mm] + [mm] \lambda_{1}\vec{a}_{1} [/mm] + [mm] \lambda_{2}\vec{a}_{2} [/mm] = [mm] \overbrace{2\lambda_{1}}^{\mu_{1}}\vec{a}_{1} [/mm] + [mm] \overbrace{2\lambda_{2}}^{\mu_{2}}\vec{a}_{2} [/mm] = [mm] \mu_{1}\vec{a}_{1} +\mu_{2}\vec{a}_{2} [/mm] mit [mm] \lambda_{1} \ge [/mm] 0 [mm] \Rightarrow 2\lambda_{1} \ge [/mm] 0 [mm] \Rightarrow \mu_{1} \ge [/mm] 0 und [mm] \lambda_{2} \ge [/mm] 0 [mm] \Rightarrow 2\lambda_{2} \ge [/mm] 0 [mm] \Rightarrow \mu_{2} \ge [/mm] 0
[mm] \Rightarrow
[/mm]
[mm] \vec{x}+\vec{y} \in [/mm] K
> Für die Abgeschlossenheit bzgl der Multiplikation mit
> Skalaren mußt Du überlegen, ob für beliebiges [mm]r\in \IR[/mm] das
> Produkt [mm]r*\vec{x}[/mm] auch im Kegel liegt.
> Wenn diese beiden Bedingungen erfüllt sind, ist der Kegel
> ein UVR des [mm]\IR^2,[/mm] sonst nicht.
[mm] \vec{x} \in [/mm] K, [mm] r\in \IR \Rightarrow r*\vec{x} \in [/mm] K?
Wähle r = -1
[mm] \Rightarrow r*\vec{x} [/mm] = [mm] -\vec{x} [/mm] = [mm] \vektor{-(\lambda_{1}+\lambda_{2})\\ -\lambda_{2}} [/mm] und [mm] \lambda_{2} [/mm] < 0
[mm] \Rightarrow r*\vec{x} \not\in [/mm] K
[mm] \Rightarrow [/mm] K kein UVR von [mm] \IR^{2}
[/mm]
Gruß und ein Danke im Voraus, Timm
|
|
|
|
|
> Ich habe diese Aufgabe dann wie folgt gelöst und würde mir
> ein Korrekturlesen eines Boardmitglieds wünschen:
>
> > Du mußt nun schauen, ob für zwei beliebige [mm]\vec{x}, \vec{y} \in[/mm]
> > K auch [mm]\vec{x}+ \vec{y}[/mm] in K liegt, was Du daran
> > feststellen kannst, ob Du die Summe ebenfalls als "positive
> > Linearkombination" v. [mm]\vec{a}_{1}und \vec{a}_{2}[/mm] schreiben
> > kannst.
>
> [mm]\vec{x} \in[/mm] K, [mm]\vec{y} \in[/mm] K [mm]\Rightarrow \vec{x}+\vec{y} \in[/mm]
> K?
>
> [mm]\vec{x}= \lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2}[/mm] ,
> [mm]\vec{y}= \lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2}[/mm]
Hallo,
hier machst Du einen Fehler.
Es sind doch jetzt [mm] \vec{x} [/mm] und [mm] \vec{y} [/mm] gleich, denn Du hast ja dieselben Vorfaktoren genommen.
Das ist natürlich Unfüg.
Es ist also richtig:
[mm] \vec{y}= \lambda'_{1}\vec{a}_{1} +\lambda'_{2}\vec{a}_{2}[/mm],
[/mm]
[mm] łambda_i, \lambda'_i \ge [/mm] 0.
Aber v. Prinzip her hast Du das schon richtig verstanden. Du mußt dann zeigen, daß die Faktoren vor den [mm] a_i [/mm] bei der Summe auch größer als Null sind.
>
> [mm]\vec{x}+ \vec{y}[/mm] = [mm]\lambda_{1}\vec{a}_{1} +\lambda_{2}\vec{a}_{2}[/mm]
> + [mm]\lambda_{1}\vec{a}_{1}[/mm] + [mm]\lambda_{2}\vec{a}_{2}[/mm] =
> [mm]\overbrace{2\lambda_{1}}^{\mu_{1}}\vec{a}_{1}[/mm] +
> [mm]\overbrace{2\lambda_{2}}^{\mu_{2}}\vec{a}_{2}[/mm] =
> [mm]\mu_{1}\vec{a}_{1} +\mu_{2}\vec{a}_{2}[/mm] mit [mm]\lambda_{1} \ge[/mm]
> 0 [mm]\Rightarrow 2\lambda_{1} \ge[/mm] 0 [mm]\Rightarrow \mu_{1} \ge[/mm] 0
> und [mm]\lambda_{2} \ge[/mm] 0 [mm]\Rightarrow 2\lambda_{2} \ge[/mm] 0
> [mm]\Rightarrow \mu_{2} \ge[/mm] 0
>
> [mm]\Rightarrow[/mm]
>
> [mm]\vec{x}+\vec{y} \in[/mm] K
>
> > Für die Abgeschlossenheit bzgl der Multiplikation mit
> > Skalaren mußt Du überlegen, ob für beliebiges [mm]r\in \IR[/mm] das
> > Produkt [mm]r*\vec{x}[/mm] auch im Kegel liegt.
> > Wenn diese beiden Bedingungen erfüllt sind, ist der
> Kegel
> > ein UVR des [mm]\IR^2,[/mm] sonst nicht.
>
> [mm]\vec{x} \in[/mm] K, [mm]r\in \IR \Rightarrow r*\vec{x} \in[/mm] K?
>
> Wähle r = -1
> [mm]\Rightarrow r*\vec{x}[/mm] = [mm]-\vec{x}[/mm] =
> [mm]\vektor{-(\lambda_{1}+\lambda_{2})\\ -\lambda_{2}}[/mm] und
> [mm]\lambda_{2}[/mm] < 0
> [mm]\Rightarrow r*\vec{x} \not\in[/mm] K
>
> [mm]\Rightarrow[/mm] K kein UVR von [mm]\IR^{2}[/mm]
Genau.
Wenn Du in Deiner HÜ hiermit beginnst, kannst Du Dir die Summe sparen, denn auch wenn die Summe noch so gut klappt, es ist kein VR und wird keiner sein.
Gruß v. Angela
|
|
|
|