www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum
Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:37 Di 20.11.2007
Autor: timako

Aufgabe
Ist die Menge ein Unterraum von [mm] \IR^{n}? [/mm]

U := [mm] \{ \vektor{x_{1} \\ . \\ . \\ x_{n}} | \summe_{i=1}^{n}x_{i}^{2} = 1 \} [/mm]

Hallo,

zu zeigen sind ja Abgeschlossenheit bzgl. Addition und Multiplikation.
Hier nun mein Lösungsansatz:

1.) Abgeschlossenheit bzgl. Addition:

[mm] \vec{x} \in \IR^{n}, \vec{y} \in \IR^{n} \Rightarrow \vec{x}+\vec{y} \in \IR^{n} [/mm] ?

[mm] \vec{x}+\vec{y} [/mm] = [mm] \vektor{x_{1}+y_{1} \\ . \\ . \\ x_{n}+y_{n}} \Rightarrow \summe_{i=1}^{n}(x_{i}+y_{i})^{2} [/mm] = 1?

--> Nun zu meiner Frage, muß ich dann hier untersuchen ob die o.g. Summe existiert und [mm] \in \IR^{n} [/mm] ist?

Vielen Dank im Voraus,
Timm.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 20.11.2007
Autor: angela.h.b.


> Ist die Menge ein Unterraum von [mm]\IR^{n}?[/mm]
>  
> U := [mm]\{ \vektor{x_{1} \\ . \\ . \\ x_{n}} | \summe_{i=1}^{n}x_{i}^{2} = 1 \}[/mm]
>  
> Hallo,
>  
> zu zeigen sind ja Abgeschlossenheit bzgl. Addition und
> Multiplikation.
>  Hier nun mein Lösungsansatz:
>  
> 1.) Abgeschlossenheit bzgl. Addition:
>  
> [mm]\vec{x} \in \IR^{n}, \vec{y} \in \IR^{n} \Rightarrow \vec{x}+\vec{y} \in \IR^{n}[/mm]
> ?
>  
> [mm]\vec{x}+\vec{y}[/mm] = [mm]\vektor{x_{1}+y_{1} \\ . \\ . \\ x_{n}+y_{n}} \Rightarrow \summe_{i=1}^{n}(x_{i}+y_{i})^{2}[/mm]
> = 1?
>  
> --> Nun zu meiner Frage, muß ich dann hier untersuchen ob
> die o.g. Summe existiert und [mm]\in \IR^{n}[/mm] ist?

Hallo,

an der Existenz dieser Summe gibt es keine Zweifel. Warum sollte die nicht existieren?
Die Summe ist keinesfalls in [mm] \IR^^n. [/mm] Das sind doch alles reelle Zahlen, die addiert werden, also ist die Summe eine reelle Zahl.

Du mußt nur entscheiden, ob [mm] \summe_{i=1}^{n}(x_{i}+y_{i})^{2}=1 [/mm] ist,

ob also die Summe v. Vektoren der Länge 1 auch wieder einen Vektor der Länge 1 ergibt.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]