www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Unterräume und deren Schnitt
Unterräume und deren Schnitt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume und deren Schnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:28 Fr 14.04.2006
Autor: AriR

Aufgabe
Sei V ein K-Vektorraum, und seien [mm] U_1,...,U_n \subset [/mm] V Untervekotrräume.
Beweisen Sie, dass folgende Aussagen äquivlant sind:
a)  Jedes [mm] v\in [/mm] V lässt sich eindeutig in der Form [mm] v=u_1,...,u_n [/mm] mit [mm] u_i\in U_i [/mm]
     für i=1,...,n schreiben
b) [mm] U_i \cap \summe_{j\not= i}U_j=0 [/mm] für alle i=1,...,n


(frabge zuvor nicht gestellt)

Hey leute, denke man kann dies am besten wieder durch [mm] a)\Rightarrow [/mm] b) und andersum machen.

für die erste inklusion:

Sei [mm] (u_{1,1},...,u_{1K1}) [/mm]   Basis von [mm] U_1 [/mm]
               [mm] \vdots [/mm]
      [mm] (u_{n,1},...,u_{n,Kn}) [/mm]  Basis von [mm] U_n [/mm]

Da jedes [mm] v\in [/mm] V eindeutig zu schreiben ist als [mm] v=u_1+...+u_n [/mm]
[mm] \Rightarrow (u_{1,1},....,u_{n,Kn} [/mm] sind Basis von V insbesondere sind sie
                    linear unabhängig
[mm] \Rightarrow \lambda_1*u_{i,1}+...+\lambda_{Ki}*u_{i,Ki}-\summe_{j\not= i}\mu_{j,1}*u_{j,1}+....+\mu{j,Kj}*u_{j,Kj}=0 [/mm]
nur für alle [mm] \lambda_1,...,\lambda_{K1},\mu{j,1},....\mu{j,Kj} [/mm] = 0 da dies eine Linearkkombination aus lin.unabh. Vektoren ist.
[mm] \Rightarrow U_i\cap \summe_{j\not= i}U_j=0 [/mm] für alle i=1,...,n


und die Rückrichtung:

mache ich noch fertig, poste ich dann auch hier rein (glaube aber dass man alle [mm] \Rightarrows [/mm] durch [mm] \gdw [/mm] erstezen kann und diese dann nciht mehr brauche oder?

danke schonmal im voraus :) Gruß Ari

        
Bezug
Unterräume und deren Schnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Sa 15.04.2006
Autor: felixf

Hallo Ari!

> Sei V ein K-Vektorraum, und seien [mm]U_1,...,U_n \subset[/mm] V
> Untervekotrräume.
>  Beweisen Sie, dass folgende Aussagen äquivlant sind:
>  a)  Jedes [mm]v\in[/mm] V lässt sich eindeutig in der Form
> [mm]v=u_1,...,u_n[/mm] mit [mm]u_i\in U_i[/mm]
> für i=1,...,n schreiben
>  b) [mm]U_i \cap \summe_{j\not= i}U_j=0[/mm] für alle i=1,...,n
>  
>
> (frabge zuvor nicht gestellt)
>  
> Hey leute, denke man kann dies am besten wieder durch
> [mm]a)\Rightarrow[/mm] b) und andersum machen.

Wie auch sonst? ;-)

> für die erste inklusion:

Warum machst du das so kompliziert? Das geht doch mit der Eindeutigkeit viel schneller! Nimm dir einen Vektor $v [mm] \in U_i \cap \sum_{j\neq i} U_j$. [/mm] Dann ist $v = [mm] \sum_{j=1}^n v_j$ [/mm] mit [mm] $v_j [/mm] = 0$ fuer $j [mm] \neq [/mm] 0$ und [mm] $v_i [/mm] = v$, und weiterhin und $v = [mm] \sum_{j\neq i} u_j [/mm] + 0$ mit [mm] $u_j \in U_j$, [/mm] $0 [mm] \in U_i$. [/mm]

So. Und die Eindeutigkeit sagt jetzt gerade, dass [mm] $u_j [/mm] = [mm] v_j$ [/mm] ist fuer $j [mm] \neq [/mm] i$ und [mm] $v_i [/mm] = 0$, also insgesamt $v = 0$.

Ist doch gleich viel einfacher, oder?

Fuer die Rueckrichtung nimm doch einfach mal an, es gibt ein $v [mm] \in [/mm] V$, welches du als $v = [mm] \sum_{i=1}^n v_i [/mm] = [mm] \sum_{i=1}^n u_i$ [/mm] darstellen kannst mit [mm] $u_i, v_i \in U_i$. [/mm] Und jetzt nimm an, dass [mm] $u_i \neq v_i$ [/mm] ist fuer ein $i$. Was gilt dann?

LG Felix


Bezug
                
Bezug
Unterräume und deren Schnitt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:22 Sa 15.04.2006
Autor: AriR

ich verstehe leider nicht ganz wo dieswe [mm] v_j [/mm] herkommen und was die [mm] \summe_{i=1}^nv_j [/mm] bedeuten soll, wenn [mm] v_j=0 [/mm] für [mm] j\not= [/mm] 0  dann ist die summme doch immer 0 oder nicht?

Bezug
        
Bezug
Unterräume und deren Schnitt: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Sa 15.04.2006
Autor: vanguard2k

Ich glaube man muss, damit diese Aussage gilt, klarerweise verlangen, dass die [mm]U_{i}[/mm] gemeinsam ganz V aufspannen.

Sonst wird man b) => a) wohl nicht zeigen können

Mfg

Michael

Bezug
        
Bezug
Unterräume und deren Schnitt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:26 So 16.04.2006
Autor: AriR

ich hab mal einen vorschlag für die rückrichtung, vielleicht stimmt die ja:

  [mm] \summe_{i\not= j}U_j=0 [/mm]
  [mm] \Rightarrow [/mm]     die Vereinigung F der Basen aller [mm] U_i [/mm]
                          [mm] 1\le i\le [/mm] n sind eine basis von V insbesondere lin.unabh.
                          [mm] F:=\{u_1_1, u_1_2,....,u_2_1,u_2_2,........,u_n_1,....,u_n_Kn\} [/mm]

   [mm] \Rightarrow [/mm]    jedes [mm] v\in [/mm] V ist darstellbar als
                         [mm] v=u_1+...+u_n=\lambda_1*u_1_1+\lambda_2*u_1_2+...+\lambda_n*u_n_n [/mm]

(hierbei stellt [mm] \lambda_1*a_1_1+...+\lambda_s*a_1_s, [/mm] das element [mm] a_1 [/mm] dar, wobei [mm] U_1 [/mm] die dimension s hat.)

eindeutig, da die Elemente aus F linear unabhängig sind.   qed.

ist das so richtig? :)

Bezug
                
Bezug
Unterräume und deren Schnitt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 20.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]