www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Unterräume, Endomorphismus
Unterräume, Endomorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume, Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Di 29.11.2005
Autor: Monschn

Hallo!!

Meine Frage:

Sei V ein endlich-dimensionaler Vektorraum über K. Für welche Untervektorräume U [mm] \subset [/mm] V gibt es einen Endomorphismus [mm] \gamma [/mm] : V --> V mit
[mm] ker(\gamma) [/mm] = [mm] im(\gamma) [/mm] = U?


Meine Idee:
Da V ein endlich dimensionaler Vektorraum ist, kann ich die Dimensionsformel verwenden (??)
also dim [mm] ker(\gamma) [/mm] + dim [mm] im(\gamma) [/mm] = dim V

Muss ich bei dieser Aufgabe die Inklusionen zeigen?? Also [mm] ker(\gamma) \subset [/mm] U und U [mm] \subset ker(\gamma) [/mm] usw.

Oder bin ich total auf dem Holzweg?? Gefragt ist ja nach den Untervektorräumen, für die diese Beziehung gilt. Ist dies für die Leere Menge oder für U = V der Fall?? *großes Fragezeichen*

Liebe Grüße,
Monschn


        
Bezug
Unterräume, Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Di 29.11.2005
Autor: andreas

hallo

> Sei V ein endlich-dimensionaler Vektorraum über K. Für
> welche Untervektorräume U [mm]\subset[/mm] V gibt es einen
> Endomorphismus [mm]\gamma[/mm] : V --> V mit
> [mm]ker(\gamma)[/mm] = [mm]im(\gamma)[/mm] = U?
>  
>
> Meine Idee:
>  Da V ein endlich dimensionaler Vektorraum ist, kann ich
> die Dimensionsformel verwenden (??)
>  also dim [mm]ker(\gamma)[/mm] + dim [mm]im(\gamma)[/mm] = dim V

das ist auf jeden fall schonmal eine sehr gute itdee die dimensionsformel anzuwenden. was folgt denn nun aus [mm] $\ker \gamma [/mm] = [mm] \text{im} \, \gamma$ [/mm] für die zugehörigen dimensionen und wenn man dies in die dimensionsformel anwendet? kann es solch einen unterraum etwa im [mm] $\mathbb{R}^3$ [/mm] oder in [mm] $\mathbb{R}^4$ [/mm] geben?

grüße
andreas

Bezug
                
Bezug
Unterräume, Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 29.11.2005
Autor: Monschn

Die Anzahl der Elemente, die im Kern sind und die Anzahl der Elemente, die im Bild von [mm] \gamma [/mm] sind, sind gleich der Dimension des Unterraums.

Wenn nun ker [mm] (\gamma) [/mm] = [mm] im(\gamma) [/mm] ist, dann sind diese beiden Mengen gleich, sprich sie haben die gleiche Mächtigkeit und somit die gleiche Dimension?!?

Ehrlich gesagt habe ich keine Ahnung.


Bezug
                        
Bezug
Unterräume, Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Mi 30.11.2005
Autor: andreas

hallo

> Die Anzahl der Elemente, die im Kern sind und die Anzahl
> der Elemente, die im Bild von [mm]\gamma[/mm] sind, sind gleich der
> Dimension des Unterraums.

nicht wirklich. bei dimensionsbetrachtungen zählst du ja nicht die elemente, so hat ja der [mm] $\mathbb{R}$-vektorraum $\mathbb{R}^1$ [/mm] unendlich viele elemente, aber dennoch nur dimension 1.


> Wenn nun ker [mm](\gamma)[/mm] = [mm]im(\gamma)[/mm] ist, dann sind diese
> beiden Mengen gleich, sprich sie haben die gleiche
> Mächtigkeit und somit die gleiche Dimension?!?

das die beiden untervektorräume gleiche dimension haben, also dass gilt [mm] $\dim \ker \gamma [/mm] = [mm] \dim \textrm{im} \, \gamma$ [/mm] ist schon mal eine sehr gute idee. setze das doch mal in die dimensionsformel ein, also ersetze dort zum beispiel [mm] $\dim \textrm{im} \, \gamma$ [/mm] durch [mm] $\dim \ker \gamma$, [/mm] was kann man dann aussagen?


grüße
andreas

Bezug
                                
Bezug
Unterräume, Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Mi 30.11.2005
Autor: Monschn

Hallo Andreas

gut, wenn ich dim [mm] im(\gamma) [/mm] durch dim [mm] ker(\gamma) [/mm] in der Dimensionsformel ersetze, erhalte ich:
dim [mm] ker(\gamma) [/mm] + dim [mm] ker(\gamma) [/mm] = dim V
--> 2 dim [mm] ker(\gamma) [/mm] = dim V
--> dim [mm] ker(\gamma) [/mm] = [mm] \bruch{1}{2} [/mm] dim V

Die Dimension des Kerns ist also halb so groß wie die Dimension des Vektorraums.

Was bedeutet das aber für meinen Untervektorraum U, der gleich dem [mm] Ker(\gamma) [/mm] sein soll?

dim U = 1/2 dim V ???? bringt mir das was??

Ich versteh leider nicht ganz, was die Dimensionen mit den Unterräumen U zu tun haben soll, für die es einen Endomorphismus gibt, so dass dann [mm] Ker(\gamma) [/mm] = [mm] im(\gamma) [/mm] = U gilt.

Liebe Grüßle

Bezug
                                        
Bezug
Unterräume, Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Fr 02.12.2005
Autor: felixf


> gut, wenn ich dim [mm]im(\gamma)[/mm] durch dim [mm]ker(\gamma)[/mm] in der
> Dimensionsformel ersetze, erhalte ich:
>  dim [mm]ker(\gamma)[/mm] + dim [mm]ker(\gamma)[/mm] = dim V
>  --> 2 dim [mm]ker(\gamma)[/mm] = dim V

>  --> dim [mm]ker(\gamma)[/mm] = [mm]\bruch{1}{2}[/mm] dim V

>  
> Die Dimension des Kerns ist also halb so groß wie die
> Dimension des Vektorraums.
>
> Was bedeutet das aber für meinen Untervektorraum U, der
> gleich dem [mm]Ker(\gamma)[/mm] sein soll?
>  
> dim U = 1/2 dim V ???? bringt mir das was??

Nun, die Dimension ist immer eine ganze Zahl: das bedeutet also, dass dim V gerade sein muss, damit es ueberhaupt so ein U geben kann.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]