www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Unterräume
Unterräume < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 09.12.2009
Autor: Reen1205

Aufgabe
Wenn es sich um einen Unterraum handelt, weisen Sie die beiden Krieterien nach!
[mm]U=\left\{(x,y,z)^T: 3x+2y+z=0\right\}[/mm]

Ich habe diese Frage in keinem anderen Forum gestellt!

So Bedingung eins ist wenn
(1) [mm] \vec v, \vec w \subset U[/mm] dann ist auch [mm] \vec v + \vec w\subset U[/mm]
und
(2) [mm]\alpha\subset\IR[/mm] und [mm]\vec w \subset U[/mm] dann ist auch [mm]\alpha*\vec w\subset U[/mm]

(1) habe ich hinbekommen
(2) [mm]\alpha*\vec w\subset U[/mm]
Der Vektor erfüllt ja diese Gleichung [mm]3w_1+2w_2+w_3=0[/mm] und wenn ich den jetzt mit dem alpha multipliziere habe ich ja folgende Gleichung [mm] 3\alpha w_1+2\alpha w_3+\alpha w_3[/mm] habe ich es dann bewiesen wenn ich das Alpha ausklammere?
[mm] \alpha*(3w_1+2w_2+w_3)=0[/mm]
Und da ich weiß, das [mm]3w_1+2w_2+w_3=0[/mm] ist, ist damit auch klar, dass  [mm]\alpha\vec w[/mm] auch im Unterraum liegt?

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mi 09.12.2009
Autor: fred97


> Wenn es sich um einen Unterraum handelt, weisen Sie die
> beiden Krieterien nach!
>  [mm]U=\left\{(x,y,z)^T: 3x+2y+z=0\right\}[/mm]
>  Ich habe diese
> Frage in keinem anderen Forum gestellt!
>  
> So Bedingung eins ist wenn
> (1) [mm]\vec v, \vec w \subset U[/mm] dann ist auch [mm]\vec v + \vec w\subset U[/mm]
> und
>  (2) [mm]\alpha\subset\IR[/mm] und [mm]\vec w \subset U[/mm] dann ist auch
> [mm]\alpha*\vec w\subset U[/mm]
>  
> (1) habe ich hinbekommen
>  (2) [mm]\alpha*\vec w\subset U[/mm]
>  Der Vektor erfüllt ja diese
> Gleichung [mm]3w_1+2w_2+w_3=0[/mm] und wenn ich den jetzt mit dem
> alpha multipliziere habe ich ja folgende Gleichung [mm]3\alpha w_1+2\alpha w_3+\alpha w_3[/mm]
> habe ich es dann bewiesen wenn ich das Alpha ausklammere?
>  [mm]\alpha*(3w_1+2w_2+w_3)=0[/mm]
>  Und da ich weiß, das [mm]3w_1+2w_2+w_3=0[/mm] ist, ist damit auch
> klar, dass  [mm]\alpha\vec w[/mm] auch im Unterraum liegt?

Ja, richtig

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]