www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterräume
Unterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Mi 02.12.2009
Autor: almightybald

Aufgabe
Im [mm] V=\IR^3 [/mm] seien Unterrräume [mm] U_1 [/mm] und [mm] U_2 [/mm] gegeben durch

[mm] U_1=\langle [/mm] (1,0,1),(0,1,-1) [mm] \rangle [/mm] = [mm] {a\times (1,0,1) + b\times (0,1,-1) \mid a,b \in \IR} [/mm]
[mm] U_2=\langle [/mm] (1,0,-1),(0,1,1) [mm] \rangle [/mm] = [mm] {a\times (1,0,-1) + b\times (0,1,1) \mid a,b \in \IR}. [/mm]

Berechnen Sie [mm] U_1 \cap U_2 [/mm] und [mm] U_1 [/mm] + [mm] U_2. [/mm]

Hallo,

die Aufgabe ist wohl recht einfach, aber sie ist die erste die ich in der Uni zu Vektorräumen bearbeite und ich mache das glaube ich nicht richtig.

Der Prof. hat darauf hingewiesen, dass wir lineare Gleichungssysteme zum lösen verwenden können und das wir die Bemerkung aus der Vorlesung verwenden können:

Bemerkung: V - K- VR (Vektorraum über Körper K) =>

[mm] (i) S \subseteq V Teilmenge => \langle S \rangle = (\sum_{i=1}^N a_i v_i \mid n \in \IN, a_i \in K, v_j \in S) [/mm]
[mm] (ii)w_i \le V \forall i \in I => w \in \sum_{i\inI} w_i <=> \exist J \subseteq I endlich \exists w_j \in W_j :w = \sum_{j\in J} w_j = \sum_{i\in I}^{end} w_i [/mm]

Das end oben bei der letzten Summe heißt nur für endlich viele [mm] w\ne [/mm] 0. Aber das kann man hier wohl trotzdem anwenden. Ich versteh die Bemerkung so einigermaßen, verstehe aber nicht wie ich sie konkret anwenden kann.

Ich hab mir die beiden Unterräume erstmal als Geraden im [mm] \IR^3 [/mm] aufgezeichnet. Danach hab ich versucht ein Gleichungssystem für die Schnittmenge aufzustellen.

[mm] ax_1 [/mm] + 0 + [mm] ax_3 [/mm] = [mm] ax_1 [/mm] + 0 - [mm] ax_3 [/mm]
0 + [mm] bx_2 [/mm] - [mm] bx_3 [/mm] =  0 + [mm] bx_2 [/mm] + [mm] bx_3 [/mm]

=>

[mm] -bx_3=bx_3 [/mm]
[mm] ax_3=-ax_3 [/mm]

=> [mm] x_3=0 [/mm]

Das Ergebnis wäre somit, dass der Durschnitt sich aus allen reellen Zahlen [mm] (x_1,x_2,0) [/mm] zusammensetzt. Anschaulich also die Ebene, die durch die [mm] x_1 x_2 [/mm] bzw. xy Achsen aufgespannt wird.
Aus meiner Grafik kann ich nicht auf dieses Ergebnis schließen. Ich hätte eher den Schnittpunkte der beiden Geraden vermutet. Aber ich hab auch noch keine Verständnis für Vektorräume.

Bei der Addition hatte ich grafisch die Vermutung, dass die Fläche, die von den beiden Geraden aufgespannt wird die Lösung ist. Aber rechnerisch weiß ich nicht, was ich da machen sollte.

Gruß almightbald

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 02.12.2009
Autor: korbinian

Hallo,
die beiden Unterräume sind Ebenen, die den Koordinatenursprung enthalten. Das kennst Du sicher aus der Schule; dort wurden sie nur etwas anders geschrieben (Parameterform!). Damit kannst Du sicher die Schnittmenge berechnen.
Wie wurde die Summe von Unterräumen eingeführt? Vielleicht kannst Du sie dir ja schon vorstellen?
Gruß Korbinian

Bezug
                
Bezug
Unterräume: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:31 Mi 02.12.2009
Autor: almightybald

Ja stimmt, es handelt sich ja um zwei Ebenen und nicht um zwei Geraden.

Nachdem ich für den zweiten Unterraum c und d als Parameter gewählt habe und die beiden Ebenen gleichgesetzt habe bin auf folgendes Gleichungssystem gekommen.

a = c
b = d
a - b = d- c

nach auflösen folgt a = b

die Schnittgerade ist somit G = a (1,0,1) + a [mm] \times [/mm] (0,1,-1) = a [mm] \times [/mm] (1,1,0)

Die Summe der Teilräume ist wohl der kleinste Teilraum von [mm] \IR^3 [/mm] der S enthält. Und S ist die Vereinigung der Teilräume.

So versteh ich unsere Vorlesungsunterlagen. Anschaulich würde ich sagen, dass das Ergebnis wieder [mm] \IR^3 [/mm] ist. Vielleicht ist das Ergebnis dann einfach:

S = a [mm] \times [/mm] (1,0,1) + b [mm] \times [/mm] (0,1,-1) + c [mm] \times [/mm] (1,0,-1) + d [mm] \times [/mm] (0,1,1)              

Also, dass man die vier Vektoren beliebig verbinden und skalieren kann.

Gruß almightybald



Bezug
                        
Bezug
Unterräume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 03.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]