www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Unterräume
Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Unterräume und Teilmengen
Status: (Frage) beantwortet Status 
Datum: 12:32 Di 07.12.2004
Autor: morbiatus

Also vielleicht ist das ja ganz trivial aber ich seh dis Lösung einfach nicht kann  mir jemand helfen:
Sei M eine nichtleere Menge von Unterräumen von V . Zeigen sie das dann [mm] \cap [/mm] M ein Unterraum von V ist.

danke schon mal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Di 07.12.2004
Autor: Hanno

Hallo morbiatus!

[willkommenmr]

Versuche, für die Menge [mm] $C:=\bigcap_{U\in M}{U}$ [/mm] die Unterraumkriterien nachzuweisen:
1.) Der Nullvektor liegt in C
2.) Die Subtraktion ist abgeschlossen
3.) Die Multiplikation ist abgeschlossen

Mehr möchte ich gar nicht dazu sagen, versuch' es einfach mal!

Liebe Grüße und viel Erfolg,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]