Untergruppen der S4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie alle Untergruppen der symmetrischen Gruppe [mm] S_4 [/mm] |
Hallo.....ja schöne umfangreiche Aufgabe, zu der ich eine kleine Verständnisfrage habe:
Also ich hab erstmal alle möglichen Permutationen notiert:
id
(12),(12),(14),etc.
(123,(321),(124),(421),etc.
(1234),(4321),etc.
Nach dem Satz von Lagrange gibt es Untergruppen der Ordung 2,3,4,6,8 und 12, da die [mm] S_4 [/mm] 4!=24 Elemente hat. Nun meine eigentliche Frage:
Untergruppen der Ordnung 3 sind ja z.B. {id,(123),(321)}, aber ist z.B. auch {id,(12),(23)} eine Untergruppe dritter Ordung? Ich bin mir nicht sicher ob das nun abgeschlossen ist oder nicht, denn vernküpft man (12) und (23) erhält man (13), das ist kein Element der (vermeintlichen) Untergruppe...lieg ich da richtig, oder hab ich da einen Denkfehler?
Gibt es unter Umständen eine Möglichkeit herauszufinden, wieviele Untergruppen es mit der jeweiligen Ordnung gibt?
Vielen Dank im Voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:26 Sa 24.11.2007 | Autor: | komduck |
{id,(12),(23)} ist keine Untergruppe,weil (12)(23) nicht in dieser Menge liegt.
(12)(23) = (123) nun muß man (123) mit alle Elementen muliplizieren
um festzustellen ob man noch weitere Elemente erhält.
Bei der Aufstellung der Untergruppen, würde ich noch dazu sagen
welche Untergruppen isomorph sind. Es gibt hier Untergruppen die
isomorph zur [mm] Z_{4} [/mm] und andere die isomoph zur Kleinsche Vierergruppe = [mm] Z_{2} \times Z_{2} [/mm] sind. Bei den sechselementigen gibt es auch verschiedene.
Es gibt einen Satz der Gruppetheorie mit dem man beweisen kann das die
achtelementigen alle isomorph sind.
Komduck
|
|
|
|