www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untergruppen der S4
Untergruppen der S4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen der S4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Fr 23.11.2007
Autor: rainman_do

Aufgabe
Bestimmen Sie alle Untergruppen der symmetrischen Gruppe [mm] S_4 [/mm]

Hallo.....ja schöne umfangreiche Aufgabe, zu der ich eine kleine Verständnisfrage habe:

Also ich hab erstmal alle möglichen Permutationen notiert:
id
(12),(12),(14),etc.
(123,(321),(124),(421),etc.
(1234),(4321),etc.

Nach dem Satz von Lagrange gibt es Untergruppen der Ordung 2,3,4,6,8 und 12, da die [mm] S_4 [/mm] 4!=24 Elemente hat. Nun meine eigentliche Frage:

Untergruppen der Ordnung 3 sind ja z.B. {id,(123),(321)}, aber ist z.B. auch {id,(12),(23)} eine Untergruppe dritter Ordung? Ich bin mir nicht sicher ob das nun abgeschlossen ist oder nicht, denn vernküpft man (12) und (23) erhält man (13), das ist kein Element der (vermeintlichen) Untergruppe...lieg ich da richtig, oder hab ich da einen Denkfehler?
Gibt es unter Umständen eine Möglichkeit herauszufinden, wieviele Untergruppen es mit der jeweiligen Ordnung gibt?

Vielen Dank im Voraus

        
Bezug
Untergruppen der S4: Antwort
Status: (Antwort) fertig Status 
Datum: 01:26 Sa 24.11.2007
Autor: komduck

{id,(12),(23)} ist keine Untergruppe,weil (12)(23) nicht in dieser Menge liegt.
(12)(23) = (123) nun muß man (123) mit alle Elementen muliplizieren
um festzustellen ob man noch weitere Elemente erhält.
Bei der Aufstellung der Untergruppen, würde ich noch dazu sagen
welche Untergruppen isomorph sind. Es gibt hier Untergruppen die
isomorph zur [mm] Z_{4} [/mm] und andere die isomoph zur Kleinsche Vierergruppe = [mm] Z_{2} \times Z_{2} [/mm] sind. Bei den sechselementigen gibt es auch verschiedene.
Es gibt einen Satz der Gruppetheorie mit dem man beweisen kann das die
achtelementigen alle isomorph sind.

Komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]