www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untergruppen/Normalteiler
Untergruppen/Normalteiler < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen/Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Sa 12.03.2005
Autor: Felidae

Hi!

Ich habe kommenden Freitag Prüfung und komme bei dieser Frage überhaupt nicht weiter:

Man gebe alle Untergruppen von [mm]<\IZ,+>[/mm] an. Sind alle diese Untergruppen Normalteiler? (Begründen Sie Ihre Aussage!)

Also ich weiss nicht, wie ich alle Untergruppen angeben soll, [mm]\IZ[/mm] ist doch eine unendliche Menge? Ich vermute mal, dass es etwas mit den Restklassen zu tun hat, weiss aber nicht, wie ich das anschreiben soll.

Zu der Frage bezüglich Normalteiler würde ich mal sagen, dass alle Untergruppen Normalteiler sind, da [mm]<\IZ,+>[/mm] kommutativ ist und alle Untergruppen einer kommutativen Gruppe sind Normalteiler.

lg
   Felidae



        
Bezug
Untergruppen/Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Sa 12.03.2005
Autor: andreas

hi


> Man gebe alle Untergruppen von [mm]<\IZ,+>[/mm] an. Sind alle diese
> Untergruppen Normalteiler? (Begründen Sie Ihre Aussage!)
>  
> Also ich weiss nicht, wie ich alle Untergruppen angeben
> soll, [mm]\IZ[/mm] ist doch eine unendliche Menge? Ich vermute mal,
> dass es etwas mit den Restklassen zu tun hat, weiss aber
> nicht, wie ich das anschreiben soll.

es stimmt, dass es unendlich viele untegruppen gibt, jedoch haben die dirket nichts mit restklassen zu tun, es wird ja keine faktorstruktur (also so etwas wie [mm] ${}^{\displaystyle\mathbb{Z}}/_{\displaystyle n \mathbb{Z}}$) [/mm] betrachtet, sondern [mm] $\mathbb{Z}$ [/mm] mit der gewöhnlichen addition. man kann ja zuerstmal feststellen, dass [m] n\mathbb{Z} = \{\hdots , -2n, -n, 0, n, 2n, \hdots \} [/m] für alle [m] n \in \mathbb{N}_0 [/m] untergruppen sind (für [m] n = 0 [/m] ergibt sich gerade die triviale untergruppe und für [m] n = 1[/m] ganz [m] \mathbb{Z} [/m]!). zeige das am besten erstmal. was dann noch zu tuen ist, ist zu zeigen, dass das alle sind. dazu könnte man für eine untergruppe $H [mm] \subset \mathbb{Z}$ [/mm] und $H [mm] \not= \{0 \}$ [/mm] einfach mal das kleinste positive element $n := [mm] \min [/mm] (H [mm] \cap \mathbb{N})$ [/mm] hernehmen (warum gibt es das?) und zeigen, dass dies die untergruppe erzeugt, also dass gilt: $h = n [mm] \mathbb{Z}$! [/mm]
probiere das doch mal. wenn du irgendwo nicht weiterkommst, kannst du ja gerne nachfragen!



> Zu der Frage bezüglich Normalteiler würde ich mal sagen,
> dass alle Untergruppen Normalteiler sind, da [mm]<\IZ,+>[/mm]
> kommutativ ist und alle Untergruppen einer kommutativen
> Gruppe sind Normalteiler.

das stimmt auf jeden fall.


grüße
andreas

Bezug
                
Bezug
Untergruppen/Normalteiler: Versuch einer Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:18 Mo 14.03.2005
Autor: Felidae

Hi!

Also für [mm]n = 0[/mm] erhalte ich [mm]0*\IZ=\{... ,-1*0,0*0,1*0, ...\} = \{0\}[/mm] und für [mm]n = 1[/mm] [mm]1*\IZ=\{... ,-1*1,0*1,1*1, ...\} =\IZ [/mm].

Für [mm]n = 2[/mm] erhalte ich [mm]2*\IZ=\{... ,-4,-2,0,2,4, ...\} [/mm] das sind alle Vielfachen von 2, für [mm]n = 3[/mm] alle Vielfachen von 3, usw.

Wenn ich jetzt das kleinste positive n nehme, das eine echte Teilmenge erzeugt und nicht [mm]\IZ[/mm] selbst, dann wäre das [mm]n = 2[/mm] oder?

Damit es eine Untergruppe sein kann, muss zumindest [mm]\{2, 0\}[/mm] in der Menge sein. Ich erhalte aber durch [mm]2+2=4[/mm] auch das Element 4, und durch [mm]2+4=6[/mm] das Element 6 usw. - also alle positiven Vielfachen von 2. Weiters müssen auch die Inversen Elemente in der Menge sein, also -2, -4, ... damit ich eine Untergruppe habe und somit habe ich [mm]\{... ,-4,-2,0,2,4, ...\}=2*\IZ[/mm] .

Ich hoffe das stimmt so halbwegs, ich war noch nie gut im Beweise formulieren.

lg
   Felidae

Bezug
                        
Bezug
Untergruppen/Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Di 15.03.2005
Autor: andreas

hi

toll, dass du einen lösungsversuch hier reinstellst (als tipp: stelle das beim nächsten mal am besten als frage, dann wird er vielleicht eher wahrgenommen).


> Hi!
>  
> Also für [mm]n = 0[/mm] erhalte ich [mm]0*\IZ=\{... ,-1*0,0*0,1*0, ...\} = \{0\}[/mm]
> und für [mm]n = 1[/mm] [mm]1*\IZ=\{... ,-1*1,0*1,1*1, ...\} =\IZ [/mm].
>  
>
> Für [mm]n = 2[/mm] erhalte ich [mm]2*\IZ=\{... ,-4,-2,0,2,4, ...\}[/mm] das
> sind alle Vielfachen von 2, für [mm]n = 3[/mm] alle Vielfachen von
> 3, usw.

das stimmt soweit schonmal. jetzt musst du noch nachweisen, dass das auch untergruppen sind (schau mal nach, wie ihr das definiert habt), das sollte aber mit diesen erkenntnissen nicht allzuschwer sein.


> Wenn ich jetzt das kleinste positive n nehme, das eine
> echte Teilmenge erzeugt und nicht [mm]\IZ[/mm] selbst, dann wäre das
> [mm]n = 2[/mm] oder?

nein. stlele dir vor dir gibt einer eine beliebige untergruppe $H$, von der du nur weißt, dass $H [mm] \not= \{0\}$. [/mm] du weißt zu diesem zeitpunkt noch nicht, dass diese untergruppe die form $H = n [mm] \mathbb{Z}$ [/mm] haben muss - das willst du erst noch beweisen. nun nimmst du das kleinste positive element $n$. dies wird im allgemeien nicht die $2$ sein, da man dir ja auch $H = 5 [mm] \mathbb{Z}$ [/mm] angedreht haben kann. nun sollst du beweisen, dass $H = n [mm] \mathbb{Z}$. [/mm] dazu zeigst du am besten die beiden inklusionen:
[m] H \supset n \mathbb{Z} [/m]: hast du schon erledigt (s.u.).
[m] H \subset n \mathbb{Z} [/m]: macht amn am besten mit widerspruch: angenommen es gibt ein $m [mm] \in [/mm] H$ mit $m [mm] \not\in [/mm] n [mm] \mathbb{Z}$ [/mm] - jetzt division mit rest durch $n$ - was für ein widerspruch ergibt sich?


> Damit es eine Untergruppe sein kann, muss zumindest [mm]\{2, 0\}[/mm]
> in der Menge sein. Ich erhalte aber durch [mm]2+2=4[/mm] auch das
> Element 4, und durch [mm]2+4=6[/mm] das Element 6 usw. - also alle
> positiven Vielfachen von 2. Weiters müssen auch die
> Inversen Elemente in der Menge sein, also -2, -4, ... damit
> ich eine Untergruppe habe und somit habe ich [mm]\{... ,-4,-2,0,2,4, ...\}=2*\IZ[/mm]

damit hast du die eine inklusion oben ja schon gezeigt.


du kannst ja den beweis noch vervollständigen und hier reinstellen, dann wird er bestimmt nochmal von jemand angeschaut!

grüße
andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]