www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Untergruppen
Untergruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Do 16.07.2009
Autor: moerni

Hallo,
ich soll zeigen:
Jede endlich erzeugte Untergruppe der additiven Gruppe Q/Z ist endlich und zyklisch.

Dass jede endlich erzeugte Untergruppe der additiven Gruppe Q/Z zyklisch ist, konnte ich nachweisen. Aber warum sie endlich ist, kann ich nicht beweisen. Mein "Ansatz":
Sei U [mm] \subset [/mm] Q/Z, seien [mm] x_1, [/mm] ... , [mm] x_s \in [/mm] Q/Z und [mm] U=\{x \in Q/Z: \exists p_i \in Z: x=p_1x_1+...+p_sx_s\} [/mm]
warum gibt es nur endlich viele x?
Über einen Tipp wäre ich sehr dankbar.

        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:11 Fr 17.07.2009
Autor: felixf

Hallo!

>  ich soll zeigen:
>  Jede endlich erzeugte Untergruppe der additiven Gruppe Q/Z
> ist endlich und zyklisch.
>  
> Dass jede endlich erzeugte Untergruppe der additiven Gruppe
> Q/Z zyklisch ist, konnte ich nachweisen.

Dann hast du den Grossteil geschafft.

> Aber warum sie
> endlich ist, kann ich nicht beweisen. Mein "Ansatz":
>  Sei U [mm]\subset[/mm] Q/Z, seien [mm]x_1,[/mm] ... , [mm]x_s \in[/mm] Q/Z und [mm]U=\{x \in Q/Z: \exists p_i \in Z: x=p_1x_1+...+p_sx_s\}[/mm]

Da du weisst das die Untergruppe zyklisch ist, reicht es zu zeigen, dass der Generator endliche Ordnung hat. Du nimmst also ein beliebiges Element aus [mm] $\IQ/\IZ$, [/mm] etwa [mm] $\frac{p}{q} [/mm] + [mm] \IZ$, [/mm] und musst ein $n [mm] \in \IN$ [/mm] finden mit $n [mm] (\frac{p}{q} [/mm] + [mm] \IZ) [/mm] = [mm] \IZ$, [/mm] also mit $n [mm] \frac{p}{q} \in \IZ$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]