www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untergruppen
Untergruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:31 Di 14.11.2006
Autor: GorkyPark

Aufgabe
Sei [mm] \mu: A\to [/mm] B ein Homomorphismus von Gruppen. [mm] A_{1} [/mm] sei eine Untergruppe von A. Zeige, dass [mm] \mu(A_{1}) [/mm] eine Untergruppe von B ist.

Hallo zusammen,

ich beschäftige mich derzeit mit Gruppen, Ringen und Körpern. Ich verstehe die Grundbegriffe, abes es wird mir manchmal zu abstrakt.

Hier ist mein Gedankengang:

Wir haben  2 Gruppen (A,*) und [mm] (B,\*) [/mm] und eine Abbildung [mm] \mu [/mm] so, dass es einen Homomorphimus von Gruppen gibt, d.h. [mm] \mu(a*b) [/mm] = [mm] \mu(a) \* \mu(b). [/mm] (*)

Die Strukturen werden erhalten.

Zu zeigen ist, dass [mm] \mu(A_{1}) [/mm] eine Untergruppe von B.

Eigenschaften einer Untergruppe:

1) es darf keine leere Menge sein
2) a,b [mm] \in [/mm] G, dann auch a*b [mm] \in [/mm] G
3) a [mm] \in [/mm] G, dann auch [mm] a^{-1} \in [/mm] G (Inverse)


Also meine Überlegungen:

1) Da [mm] A_{1} [/mm] eine Untergruppe von A ist, ist diese auch nicht leer. Jedes Element von A wird mit der Abbildung in die Gruppe B "umgesetzt", d. h. [mm] \mu (A_{1}) [/mm] existiert und ist keine leere Menge.

2) a,b [mm] \in A_{1} [/mm] => a*b [mm] \in A_{1}. [/mm]
    [mm] \mu [/mm] (a), [mm] \mu [/mm] (b) [mm] \in \mu(A_{1}) [/mm] => [mm] \mu(a) \* \mu(b) \in \mu(A_{1}) [/mm]

[mm] \mu [/mm] (a*b) = [mm] \mu(a) \* \mu(b) [/mm]

Da es ein Homomorphismus ist und die Formel (*) gilt, ist automatisch [mm] \mu(a) \* \mu(b) \in \mu(A_{1}. [/mm]


3.) Das neutale Element von [mm] A_{1} [/mm] wird auf das neutrale Element von [mm] \mu(A_{1}) [/mm] projiziert.

e [mm] \to \mu(e) [/mm]


[mm] a^{-1}*a [/mm] =e (da [mm] A_{1} [/mm] eine Gruppe ist)  => [mm] \mu(a^{-1}) \* \mu(a) [/mm] = [mm] \mu(e) [/mm]

Daraus folgt, dass [mm] \mu(a^{-1}) [/mm] für jedes [mm] \mu(a) [/mm] das Inverse ist.

Und damit wäre [mm] \mu(A_{1}) [/mm] eine Untergruppe von B.


Meine Frage nun: Stimmt das? Reicht das als Beweis? Es erscheint mir zwar logisch, ich kann es aber mathematisch schlecht ausdrücken. Was kann man besser, klarer machen?

Vielen Dank!


Ich habe diese Frage auf keiner anderen Internetseite gestellt.










        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Di 14.11.2006
Autor: angela.h.b.


> Sei [mm]\mu: A\to[/mm] B ein Homomorphismus von Gruppen. [mm]A_{1}[/mm] sei
> eine Untergruppe von A. Zeige, dass [mm]\mu(A_{1})[/mm] eine
> Untergruppe von B ist.
>  
> Hier ist mein Gedankengang:
>  
> Wir haben  2 Gruppen (A,*) und [mm](B,\*)[/mm] und eine Abbildung
> [mm]\mu[/mm] so, dass es einen Homomorphimus von Gruppen gibt, d.h.
> [mm]\mu(a*b)[/mm] = [mm]\mu(a) \* \mu(b).[/mm] (*)
>  
> Die Strukturen werden erhalten.
>  
> Zu zeigen ist, dass [mm]\mu(A_{1})[/mm] eine Untergruppe von B.
>  
> Eigenschaften einer Untergruppe:
>  
> 1) es darf keine leere Menge sein
>  2) a,b [mm]\in[/mm] G, dann auch a*b [mm]\in[/mm] G
>  3) a [mm]\in[/mm] G, dann auch [mm]a^{-1} \in[/mm] G (Inverse)

Hallo,

ich finde, daß Du Dir alles sinnvoll und richtig überlegt hast.

Einges würde ich etwas anders aufschreiben, aber die überlegungen sind in Ordnung.

>  
>
> Also meine Überlegungen:
>  
> 1) Da [mm]A_{1}[/mm] eine Untergruppe von A ist, ist diese auch
> nicht leer. Jedes Element von A wird mit der Abbildung in
> die Gruppe B "umgesetzt", d. h. [mm]\mu (A_{1})[/mm] existiert und
> ist keine leere Menge.

Ich würde hier gleich mit dem neutralen Element argumentieren:
[mm] A_1 [/mm] ist nichtleer, weil es als Untergruppe das neutrale Element e von A enthält. Folglich ist [mm] \mu [/mm] (e) [mm] \in \mu (A_{1}) [/mm] und somit [mm] \mu (A_{1}) [/mm]  nichtleer.

>  
> 2) a,b [mm]\in A_{1}[/mm] => a*b [mm]\in A_{1}.[/mm]
>      [mm]\mu[/mm] (a), [mm]\mu[/mm] (b)
> [mm]\in \mu(A_{1})[/mm] => [mm]\mu(a) \* \mu(b) \in \mu(A_{1})[/mm]
>
> [mm]\mu[/mm] (a*b) = [mm]\mu(a) \* \mu(b)[/mm]
>  
> Da es ein Homomorphismus ist und die Formel (*) gilt, ist
> automatisch [mm] \mu(a) \* \mu(b) \in \mu(A_{1}. [/mm]

Hier würde ich mir zwei Elemente b_1und [mm] b_2 [/mm] aus [mm] \mu (A_{1}) [/mm]  hernehmen.
Seien [mm] b_1, b_2 \in \mu (A_{1}) [/mm] .
Dann gibt es [mm] a_1 [/mm] und [mm] a_2 \in A_1 [/mm] mit [mm] \mu (a_1)=b_1 [/mm] und [mm] \mu (a_2)=b_2. [/mm]

Somit ist [mm] b_1*b_2=\mu (a_1)*\mu (a_2) [/mm]
[mm] =\mu (a_1*a_2) [/mm]        denn [mm] \mu [/mm] ist Homomorphismus

Da [mm] A_1 [/mm] Gruppe, ist [mm] a_1*a_2 \in A_1, [/mm] also [mm] b_1*b_2=\mu (a_1*a_2) \in \mu (A_1) [/mm]

>  
>
> 3.) Das neutale Element von [mm]A_{1}[/mm] wird auf das neutrale
> Element von [mm]\mu(A_{1})[/mm] projiziert.
>  
> e [mm]\to \mu(e)[/mm]
>  
>
> [mm]a^{-1}*a[/mm] =e (da [mm]A_{1}[/mm] eine Gruppe ist)  => [mm]\mu(a^{-1}) \* \mu(a)[/mm]
> = [mm]\mu(e)[/mm]
>  
> Daraus folgt, dass [mm]\mu(a^{-1})[/mm] für jedes [mm]\mu(a)[/mm] das Inverse
> ist.

Sei b [mm] \in \mu (A_1). [/mm] Dann gibt es ein a [mm] \in A_1 [/mm] mit [mm] b=\mu [/mm] (a)

Da [mm] A_1 [/mm] Gruppe, ist für jedes a [mm] \in A_1 [/mm] auch [mm] a^{-1} \in A_1. [/mm]
Also ist [mm] \mu (a^{-1}) \in \mu (A_1). [/mm]

Es ist [mm] b*\mu (a^{-1})= \mu [/mm] (a) * [mm] \mu (a^{-1})=\mu (a*a^{-1}) [/mm]   (wg. Homomorphismus)
                                             = [mm] \mu(e) [/mm]

Da [mm] \mu [/mm] Homomorphismus, ist [mm] \mu(e) [/mm] das neutrale Element in B bzw. [mm] \mu (A_1), [/mm] und somit ist [mm] \mu (a^{-1})\in \mu (A_1) [/mm] das inverse Element zu b.

Gruß v. Angela


>  
> Und damit wäre [mm]\mu(A_{1})[/mm] eine Untergruppe von B.
>  
>
> Meine Frage nun: Stimmt das? Reicht das als Beweis? Es
> erscheint mir zwar logisch, ich kann es aber mathematisch
> schlecht ausdrücken. Was kann man besser, klarer machen?
>  
> Vielen Dank!
>  
>
> Ich habe diese Frage auf keiner anderen Internetseite
> gestellt.
>  
>
>
>
>
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]