www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Untergruppeen
Untergruppeen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppeen: Zwei UG undleich Gruppe
Status: (Frage) beantwortet Status 
Datum: 11:25 Fr 17.03.2006
Autor: KME

Aufgabe
Sei G eine Gruppe und seien H, J zwei Untergruppen von G mit H [mm] \not= [/mm] G und J [mm] \not= [/mm] G.
Zu Beweisen:
H [mm] \cup [/mm] J [mm] \not= [/mm] G

Hi
Auch wenn ich das Gefühl habe, dass diese Aufgabe eigentlich relativ einfach ist (man kann hier ja eigentlich nur mit den Gruppen- und Untergruppeneigenschaften arbeiten oder?), bräuchte ich mal ein paar neue Denkanstöße, ich hänge gerade irgendwie bei ein zwei falschen Ideen fest.

Ich sag dann schon mal Danke für jede neue Idee


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Untergruppeen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Fr 17.03.2006
Autor: mathiash

Hallo und einen guten Mittag,

passt grad noch vor den Mensagang und ist in der Tat einfach:

Nimm

[mm] j\in J\setminus H,\:\: h\in H\setminus [/mm] J,

wäre [mm] h\cdot j\in [/mm]  H, so auch [mm] h^{-1}\cdot h\cdot [/mm] j=j, Widerspruch, der dandere Fall genauso.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]