www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Untergruppe zyklischer Gruppe
Untergruppe zyklischer Gruppe < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppe zyklischer Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Fr 13.05.2011
Autor: Teufel

Aufgabe
Sei G eine zyklische Gruppe der Ordnung n und r ein Teiler von n. Zeige: Es gibt genau eine Untergruppe U mit ord(U)=r.

Hi!

Also eine Untergruppe anzugeben, die Ordnung r hat, ist ja leicht. [mm] (, [/mm] wobei g der Erzeuger von G ist).
Aber wie kann ich zeigen, dass es die einzige ist?

Ich wollte irgendwie so anfangen: Sei V eine weitere Untergruppe, ord(V)=r.
Nun wollte ich zeigen, dass [mm] g^\frac{n}{r} \in [/mm] V sein muss, denn dann würde schon die Gleichheit folgen. Aber ich weiß nicht so recht, wie ich das anstellen kann.

        
Bezug
Untergruppe zyklischer Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Fr 13.05.2011
Autor: felixf

Moin!

> Sei G eine zyklische Gruppe der Ordnung n und r ein Teiler
> von n. Zeige: Es gibt genau eine Untergruppe U mit
> ord(U)=r.
>  Hi!
>  
> Also eine Untergruppe anzugeben, die Ordnung r hat, ist ja
> leicht. [mm](,[/mm] wobei g der Erzeuger von G ist).
>  Aber wie kann ich zeigen, dass es die einzige ist?
>  
> Ich wollte irgendwie so anfangen: Sei V eine weitere
> Untergruppe, ord(V)=r.
>  Nun wollte ich zeigen, dass [mm]g^\frac{n}{r} \in[/mm] V sein muss,
> denn dann würde schon die Gleichheit folgen. Aber ich
> weiß nicht so recht, wie ich das anstellen kann.

Schau dir die Abbildung [mm] $\varphi [/mm] : G [mm] \to [/mm] G$, $x [mm] \mapsto x^r$ [/mm] an. Der Kern davon ist gerade [mm] $\langle g^{n/r} \rangle$ [/mm] (warum?).

Beachte jetzt, dass jede Untergruppe $V$ mit $r$ Elementen [mm] $\varphi(V) [/mm] = [mm] \{ e \}$ [/mm] erfuellt (warum?), also $V [mm] \subseteq \ker \varphi$. [/mm]

LG Felix


Bezug
                
Bezug
Untergruppe zyklischer Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Sa 14.05.2011
Autor: Teufel

Hallo, mein Freund der Zahlentheorie!

Vielen Dank für deine Hilfe. Mit dieser Abbildung löst sich alles in Wohlgefallen auf. Ich wäre aber wohl die nächster Zeit nicht darauf gekommen, einfach diese Abbildung zu betrachten. Wie macht man so etwas immer nur? ;)

Ich habe jetzt deine Anleitung befolgt und alles gezeigt, was du vorgegeben hast. Nun hat man $V [mm] \subseteq ker(\varphi)$ [/mm] und weil V und [mm] ker(\varphi) [/mm] gleich viele Elemente haben, muss bereits Gleichheit gelten, also  [mm] $V=ker(\varphi)$. [/mm]

Danke nochmals!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]