Unterdeterminate < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweise: Für A ∈ Km×n gilt RangA = r, falls A eine r-reihige Unterdeterminante
ungleich Null besitzt und falls im Falle r < min{m, n} alle (r + 1)-reihigen Unterdeterminanten
von A gleich Null sind. |
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
Hallo liebes Mathe Forum!
Ich verzweifle gerade an einer Aufgabe, vielleicht kann mir ja jemand dabei helfen?
Ich soll zeigen, dass:
|
|
|
|
> Hallo liebes Mathe Forum!
>
> Ich verzweifle gerade an einer Aufgabe, vielleicht kann mir
> ja jemand dabei helfen?
> Ich soll zeigen, dass:
> Beweise: Für A ∈ Km×n gilt RangA = r, falls A eine
> r-reihige Unterdeterminante
> ungleich Null besitzt und falls im Falle r < min{m, n}
> alle (r + 1)-reihigen Unterdeterminanten
> von A gleich Null sind.
Gibt es eine [mm]r[/mm]-reihige Unterdeterminante [mm]\neq 0[/mm], so sind die Spalten von [mm]A[/mm], aus denen diese Unterdeterminante herausgegriffen worden ist, jedenfalls linear-unabhängig. Also muss gelten [mm]\text{Rang}(A) \geq r[/mm].
Wir müssen noch zeigen, dass [mm]\text{Rang}(A)\leq r[/mm] ist, falls jede [mm]r+1[/mm]-reihige Unterdeterminante [mm]=0[/mm] ist. Indirekter Beweis: Angenommen es wäre [mm]\text{Rang}(A)\geq r+1[/mm], dann gäbe es also [mm]r+1[/mm] linear-unabhängige Spaltenvektoren von [mm]A[/mm]. Da aber Spaltenrang gleich Zeilenrang ist (deshalb spricht man ja bei einer Matrix einfach nur kurz vom "Rang" der Matrix), muss es in der durch diese [mm]r+1[/mm] Spaltenvektoren von [mm]A[/mm] gebildeten Untermatrix auch [mm]r+1[/mm] linear-unabhängige Zeilenvektoren geben. Die aus diesen [mm]r+1[/mm] linear-unabhängigen Zeilenvektoren der linear-unabhängigen [mm]r+1[/mm] Spaltenvektoren von [mm]A[/mm] gebildete quadratische Untermatrix von [mm]A[/mm] ist also regulär und hätte somit eine Determinante [mm]\neq 0[/mm]. Da es aber, nach Voraussetzung über [mm]A[/mm], keine [mm]r+1[/mm]-reihige Unterdeterminante [mm]\neq 0[/mm] von [mm]A[/mm] gibt, muss unsere Annahme, dass es [mm]r+1[/mm] linear-unabhängige Spaltenvektoren von [mm]A[/mm] gibt, falsch sein.
Insgesamt haben wir damit gezeigt: [mm]r\leq \text{Rang}(A)\leq r[/mm], also ist [mm]\text{Rang}(A)=r[/mm].
|
|
|
|