www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - UnterVR K^n mit twist
UnterVR K^n mit twist < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

UnterVR K^n mit twist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Sa 07.12.2013
Autor: RunOrVeith

Aufgabe
Sei K ein Körper und n ∈ [mm] \IN [/mm]
a) Für welche a ∈ K ist [mm] V_a [/mm] := { [mm] (v_1,...,v_n) [/mm] ∈ [mm] K^n [/mm] | [mm] \summe_{i=1}^{n} v_i [/mm] =a} ein Untervektorraum von [mm] K^n? [/mm]

b) Bestimmen sie für diese a jeweils eine Basis und die Dimension von Va.

Hallo,

ich verstehe hier nicht ganz, ob die [mm] v_i [/mm] (und somit die v) Einträge EINES Vektors sind oder n verschiedene Vektoren.

Wenn es Einträge sind, dann ist mir die a) klar, dann stimmt das nur für a = [mm] 0_K, [/mm] da sonst die Abgeschlossenheit zweier Vektoren aus dem UVR verletzt ist.
Wenn dies aber einzelne Vektoren sind, dann verstehe ich nicht, wie die Summe von Vektoren einen Wert a ergeben kann, und nicht einen neuen Vektor.

Sind es jedoch einzelne Werte, dann verstehe ich nicht, wie ich an die b) herangehen soll. Denn dann wäre ja die oben gegebene Menge bereits eine Basis von [mm] V_a [/mm] und immer eindimensional. Allerdings kann ich ja recht viele linear unabhängige Vektoren finden, deren Wertesumme 0 ergibt, also eben für jedes n (und a = 0): [mm] \vektor{1 \\ -1/n \\ ... \\ -1/n} [/mm] und dann die 1 an jeder Stelle, also n Möglichkeiten.

Ich habe irgendwie das Gefpühl ganz schön auf dem Holzweg zu sein.
Bitte helft mir auf die Sprünge.

Herzlichen Dank!

        
Bezug
UnterVR K^n mit twist: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Sa 07.12.2013
Autor: angela.h.b.


> Sei K ein Körper und n ∈ [mm]\IN[/mm]
> a) Für welche a ∈ K ist [mm]V_a[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= { [mm](v_1,...,v_n)[/mm] ∈ [mm]K^n[/mm]

> | [mm]\summe_{i=1}^{n} v_i[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

=a} ein Untervektorraum von [mm]K^n?[/mm]
>

> b) Bestimmen sie für diese a jeweils eine Basis und die
> Dimension von Va.
> Hallo,

>

> ich verstehe hier nicht ganz, ob die [mm]v_i[/mm] (und somit die v)
> Einträge EINES Vektors sind oder n verschiedene Vektoren.

Hallo,

ersteres.

In [mm] V_a [/mm] sind die Vektoren, deren Einträge summiert a ergeben.

>

> Wenn es Einträge sind, dann ist mir die a) klar, dann
> stimmt das nur für a = [mm]0_K,[/mm]

Genau.


> verstehe ich nicht, wie
> ich an die b) herangehen soll.

In [mm] V_0 [/mm] sind die Vektoren [mm] v=\vektor{v_1\\\vdots\\v_n} [/mm] die von der Bauart

[mm] \vektor{v_1\\\vdots\\v_n}=\vektor{v_1\\\vdots\\v_{n-1}\\-v_1-v_2-...-v_{n-1}}=v_1*\vektor{1\\0\\\vdots\\0\\-1}+v_2*\vektor{\vdots\vdots\vdots}+...+v_{n-1}*\vektor{\vdots\vdots\vdots} [/mm]

sind.

Nun siehst Du, welche Vektoren [mm] V_0 [/mm] erzeugen, und damit ist eine Basis nicht weit.

LG Angela






Denn dann wäre ja die oben

> gegebene Menge bereits eine Basis von [mm]V_a[/mm] und immer
> eindimensional. Allerdings kann ich ja recht viele linear
> unabhängige Vektoren finden, deren Wertesumme 0 ergibt,
> also eben für jedes n (und a = 0): [mm]\vektor{1 \\ -1/n \\ ... \\ -1/n}[/mm]
> und dann die 1 an jeder Stelle, also n Möglichkeiten.

>

> Ich habe irgendwie das Gefpühl ganz schön auf dem Holzweg
> zu sein.
> Bitte helft mir auf die Sprünge.

>

> Herzlichen Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]