www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Unstetigkeitsstellen
Unstetigkeitsstellen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetigkeitsstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 17.12.2009
Autor: Stefan-auchLotti

Aufgabe
Bestimmen Sie die Stetigkeitsstellen und die Unstetigkeitsstellen der folgenden Funktionen.

a) [mm] $f:\IR\to\IR,x\mapsto|x|$ [/mm]

b) [mm] $f:\IR\to\IR,x\mapsto\begin{cases} x*\sin\left(\frac{1}{x}\right), & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}$ [/mm]

c) [mm] $f:\IR\to\IR,x\mapsto\begin{cases} \frac{\left[|x|\right]}{|x|}, & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}$ [/mm]

$[x]$ ist die größte ganze Zahl, die kleinergleich $x$ ist.  

Hallo, Leute,

leider weiß ich, dass das im Prinzip welche der einfachsten Beispiele für Stetigkeit sind, aber unser Kleingruppenleiter hat es aus Zeitgründen überhaupt nicht geschafft, uns darin mal einzuarbeiten.

Ich wär sehr dankbar, wenn ich mir mal die Vorgehensweise erläutern würdet. Meine Ansätze:

a) Per Definition lässt sich der Betrag aufspalten in $x>0$, was $x$ entspricht, $x<0$, was $-x$ entspricht, und $x=0$, wo die Funktion den Wert 0 annimmt. Da Polynome stetig sind, ist die Funktion auf [mm] $x\not=0$ [/mm] stetig. Soweit klar! Jetzt weiß ich aber nicht, wie ich eine Folge konstruieren kann, die mir die Unstetigkeit in $x=0$ zeigt, kann man auch und wenn ja wie mit dem [mm] $\delta -\epsilon-$Kriterium [/mm] ran?

b) Produkt eines Polynoms und Verkettung vom Sinus mit einer rationalen Funktion, die ja stetig auf ihrem Def.-Bereich ist, ist stetig. Somit geht es hier auch nur um $x=0$.

c) [mm] $f:\IR\to\IR,x\mapsto\begin{cases} 0, & \mbox{falls } -1
Hab' die mal umgeschrieben, damit wir sehen, welche Stellen Kandidaten für Unstetigkeit sind.

Also auf $-1<x<1$, insbesondere inklusive $0$, ist die Fkt. das Nullpolynom und somit stetig. Für alle Zahlen [mm] $\notin\IZ$ [/mm] ist es ne rationale Funktion und somit stetig. Verbleiben alle Werte [mm] $\in\IZ$. [/mm]

Vieeelen Dank für Ansätze,

Stefan.

        
Bezug
Unstetigkeitsstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 17.12.2009
Autor: fred97


> Bestimmen Sie die Stetigkeitsstellen und die
> Unstetigkeitsstellen der folgenden Funktionen.
>  
> a) [mm]f:\IR\to\IR,x\mapsto|x|[/mm]
>  
> b) [mm]f:\IR\to\IR,x\mapsto\begin{cases} x*\sin\left(\frac{1}{x}\right), & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}[/mm]
>  
> c) [mm]f:\IR\to\IR,x\mapsto\begin{cases} \frac{\left[|x|\right]}{|x|}, & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}[/mm]
>  
> [mm][x][/mm] ist die größte ganze Zahl, die kleinergleich [mm]x[/mm] ist.
> Hallo, Leute,
>  
> leider weiß ich, dass das im Prinzip welche der
> einfachsten Beispiele für Stetigkeit sind, aber unser
> Kleingruppenleiter hat es aus Zeitgründen überhaupt nicht
> geschafft, uns darin mal einzuarbeiten.
>  
> Ich wär sehr dankbar, wenn ich mir mal die Vorgehensweise
> erläutern würdet. Meine Ansätze:
>  
> a) Per Definition lässt sich der Betrag aufspalten in [mm]x>0[/mm],
> was [mm]x[/mm] entspricht, [mm]x<0[/mm], was [mm]-x[/mm] entspricht, und [mm]x=0[/mm], wo die
> Funktion den Wert 0 annimmt. Da Polynome stetig sind, ist
> die Funktion auf [mm]x\not=0[/mm] stetig. Soweit klar! Jetzt weiß
> ich aber nicht, wie ich eine Folge konstruieren kann, die
> mir die Unstetigkeit in [mm]x=0[/mm] zeigt,


Die Funktion ist in x=0 stetig ! Nimm eine Folge [mm] (x_n) [/mm] mit [mm] x_n \to [/mm] 0. Was macht dann [mm] (f(x_n)) [/mm] = [mm] (|x_n|) [/mm]  ??



> kann man auch und wenn
> ja wie mit dem [mm]\delta -\epsilon-[/mm]Kriterium ran?
>  
> b) Produkt eines Polynoms und Verkettung vom Sinus mit
> einer rationalen Funktion, die ja stetig auf ihrem
> Def.-Bereich ist, ist stetig. Somit geht es hier auch nur
> um [mm]x=0[/mm].


Hier ist $|f(x)| [mm] \le [/mm] |x|$ für jedes x. Also .. ?


FRED



>  
> c) [mm]f:\IR\to\IR,x\mapsto\begin{cases} 0, & \mbox{falls } -1
>  
> Hab' die mal umgeschrieben, damit wir sehen, welche Stellen
> Kandidaten für Unstetigkeit sind.
>  
> Also auf [mm]-1
> Nullpolynom und somit stetig. Für alle Zahlen [mm]\notin\IZ[/mm]
> ist es ne rationale Funktion und somit stetig. Verbleiben
> alle Werte [mm]\in\IZ[/mm].
>  
> Vieeelen Dank für Ansätze,
>  
> Stefan.


Bezug
        
Bezug
Unstetigkeitsstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Do 17.12.2009
Autor: leduart

Hallo
a und b sind stetig in 0, [mm] \epsilon \delta [/mm] eignet sich für beide. bei a auch einfach eine beliebige 0 Folge [mm] x_n [/mm]
(Du darst für Stetigkeit keine spezielle nehmen, damit kann man nur Unstetigkeit zeigen)
bei b) dran denken, das [mm] |sin(a)|\le1 [/mm] für alle a.
bei c die einfachste Nullfolge von links und von rechts.zeigt die Unstetigkeit.
Gruss leduart


Bezug
        
Bezug
Unstetigkeitsstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:40 Fr 18.12.2009
Autor: Stefan-auchLotti

Ich habs hinbekommen, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]