www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Unsinnsbeweise
Unsinnsbeweise < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unsinnsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Do 21.09.2006
Autor: inequality

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo!

Ich kannte mal einige relativ einfache, aber auch kompliziertere Beweise, die offensichtlich Unsinn, wie z.B. 1+1= 3 oder derartiges bewiesen, wo der Fehler allerdings nie offensichtlich war.
Leider kann ich sie nicht mehr finden (weder in meinem Kopf noch in meinen Unterlagen)

Wer kennst diese eund kann mir helfen?

Liebe Grüße,
Julia



        
Bezug
Unsinnsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Do 21.09.2006
Autor: Zwerglein

Hi, inequality,

meinst Du sowas?

[]http://janko.at/Raetsel/Mathematik/004.a.htm

mfG!
Zwerglein

Bezug
        
Bezug
Unsinnsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Do 21.09.2006
Autor: inequality

Ja, super vielen Dank! Das hilft mir fürs erste schon einmal enorm weiter!
Auch wenn ich jetzt eher an einen mit komplexen Zahlen dachte, wo dann gezeigt wird das -1 = +1 ist.

Kennt möglicherweise auch den jemand?
Danke schonmal im vorraus für eure Mühe..

LG Julia

Bezug
                
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Do 21.09.2006
Autor: Zwerglein

Hi, inequality,

tut mir leid: Dazu kenn' ich keinen Link!

mfG!
Zwerglein

Bezug
                
Bezug
Unsinnsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 21.09.2006
Autor: chrisno

Hallo Julia,

mit $i = [mm] \sqrt{-1}$ [/mm] kann man, wenn man die Rechenregeln für die Wurzelrechnung im Reellen anwendet, zeigen, dass 1 = -1 folgt. Ich müsste ein wenig suchen, um die Rechnung wiederzufinden. Es geht mit nur drei oder vier Umformungen.
Die Definition [mm] $i^2 [/mm] = -1$ schützt vor solchen Rechnungen. Man muss aber auch darüber nachdenken, ob man die Wurzelrechnung genauso wie im Reellen durchführen darf.

Bezug
        
Bezug
Unsinnsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 01:20 Fr 22.09.2006
Autor: unixfan

Also erstmal um mögliche Missverständnisse zu beseitigen: Ein Beweis der mit den "normalen" Axiomen zeigt, dass $-1  = 1$ ist, ist kein Beweis sondern eine Täuschung, weil ein Axiom missachtet wurde.
Aber ich glaube Du meinst folgenden "Beweis":
$-1 = [mm] (\sqrt{-1})^2 [/mm] = [mm] \sqrt{-1} \sqrt{-1} [/mm] = [mm] \sqrt{(-1)(-1)} [/mm] = [mm] \sqrt{1} [/mm] = 1$

Bezug
                
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Fr 22.09.2006
Autor: inequality

Vielen Dank!

Genau diesen Täuschungsbeweis habe ich unter anderem gesucht. Danke! Aber auch die anderen zwei haben mir geholfen!
Und natütlich sehe ich ein, das diese Beweise KEINE Beweise sind...

Liebe Grüße,
Julia

Bezug
                        
Bezug
Unsinnsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Fr 22.09.2006
Autor: Teufel

Ich habe nur 1=2 und 64=65 ;)
[]Link-Text (wobei man es hier leicht sehen sollte)


[Dateianhang nicht öffentlich]
Und das 2.


-20 = -20
     16-36 = 25-45
16-36+81/4 = 25-45+81/4
[mm] (4-9/2)^2 [/mm] = [mm] (5-9/2)^2 [/mm]    
     4-9/2 = 5-9/2
         4 = 5

Aber mich würde gerne interessieren wo hier der Fehler steckt...


Nur b konnte ich herausfinden.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                                
Bezug
Unsinnsbeweise: unterschiedliche Steigungen
Status: (Antwort) fertig Status 
Datum: 21:09 Fr 22.09.2006
Autor: Loddar

Hallo Teufel!


bei dem "umgewandelten Quadrat" wird  mit den einzelnen Steigungen der schrägen Schnitte geschludert, so dass diese gar nicht übereinandergelegt werden können.

Der erste Schnitt hat den Steigungswert [mm] $\bruch{3}{8} [/mm] \ = \ 0.375$ . Bei dem darauffolgenden Schnitt (zwischen "blau" und "orange") beträgt die Steigung aber mehr: nämlich [mm] $\bruch{2}{5} [/mm] \ =  \ 0.40 \ [mm] \not= [/mm] \ 0.375$ .

Damit kann mann die Einzelstücke auch gar nicht mehr wie angegeben zusammensetzen ...


Gruß
Loddar


Bezug
                                        
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Fr 22.09.2006
Autor: Teufel

Danke erstmal ;) aber ich meinte diese Umformung eigentlich.

Bezug
                                
Bezug
Unsinnsbeweise: da fehlt ein Betrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Fr 22.09.2006
Autor: Loddar

Hallo Teufel!


Bis hierhin ist alles okay ...


> [mm](4-9/2)^2[/mm] = [mm](5-9/2)^2[/mm]    

Aber der nächste korrekte Schritt müsste lauten:

[mm] $\left| \ 4-\bruch{9}{2} \ \right| [/mm] \ = \ [mm] \left| \ 5-\bruch{9}{2} \ \right|$ [/mm]
Also mit Betragsstrichen.

Denn innerhalb der Klammern steht da ja schließlich:

[mm]\left(-\bruch{1}{2}\right)^2 \ = \ \left(+\bruch{1}{2}\right)^2[/mm]    


Nun klar(er)?


Gruß
Loddar


Bezug
                                        
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Fr 22.09.2006
Autor: Teufel

Aaachso, ja klar :) danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]