www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Uni lineare Algebra
Uni lineare Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uni lineare Algebra: Vektorraumaxiome
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:16 Sa 11.12.2004
Autor: Moe007

Hallo,
bei dieser Aufgabe check ich leider nicht was ich machen soll, ich hab schon alles versucht und sitze hier jetzt schon Stunden drann. Wäre echt super wenn mir jemand etwas zur Hilfe kommen könnte. Vielen dank im Vorraus.

Es gelten folgende Vektorraumaxiome:

a) (v,+) ist eine abelsche Gruppe
b) [mm] \forall \alpha [/mm] , [mm] \beta \in [/mm] K und x  [mm] \in [/mm]  V gilt (  [mm] \alpha [/mm] + [mm] \beta [/mm] ) x = [mm] \alpha [/mm] x +  [mm] \beta [/mm] x
c)  [mm] \forall \alpha \in [/mm] K und x,y [mm] \in [/mm]  V gilt  [mm] \alpha [/mm] (x +  y)= [mm] \alpha [/mm] x + [mm] \alpha [/mm] y
d) [mm] \forall [/mm] x [mm] \in [/mm]  V und [mm] \alpha [/mm] , [mm] \beta \in [/mm]  K gilt [mm] \alpha [/mm] ( [mm] \beta [/mm]  x)= [mm] (\alpha \beta) [/mm] x  
e)  [mm] \forall [/mm] x [mm] \in [/mm]  V gilt 1x=x.
Man soll zeigen, dass keines der Axiome b) bis e) aus den anderen Vektoraumaxiomen folgt. Außerdem soll man für die 4 möglichen Fälle eine abelsche Gruppe (V,+), einen Körper K und die Multiplikation   * : K  [mm] \times [/mm]  V  [mm] \to [/mm]  V angeben, so dass für (V,+,  *)  genau 3 der Aussagen b), c), d), e) gelten.

Ich versteh die Aufgabenstellung nicht, kann mir einer das auf Deutsch erklären? *ich sitzte schon den ganzen tag daran und check den... trotzdem nicht.
Ich dachte Axiome muss man nicht beweisen…
Und wie soll ich z.B. zu b) eine abelsche Gruppe angeben? Soll ich zu α und β jeweils das Inverse angeben und ein neutrales Element?

Nochmals danke...

Gruß Moe007

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Uni lineare Algebra: Erklärung
Status: (Antwort) fertig Status 
Datum: 02:12 Mo 13.12.2004
Autor: Jerry77


Es sollen immer jeweils drei der vier der Axiome b) -e) mit a) kombiniert und untersucht werden .

daher hast Du immer vier Axiome zur Verfügung ( unter anderem a) - also eine abelsche Gruppe) . Das  fehlende nimmst Du negiert an, und bildst eine abelsche Gruppe die alles zusammen erfüllt. Wenn du diese 4 Beispiele gefunden hast , hast Du auch gezeigt, dass keines  der 4 Axiome b) bis e)  aus den jeweils 4 anderen gefolgert werden kann, denn :

A==> B , d.h    [mm] \neg [/mm] B ==> [mm] \neg [/mm] A
B ist nun die Aussage  die wir "weglassen",  also wie oben beschrieben als negiert annehmen.  Wenn  B aus irgendeinem der Axiome zu folgern waere, hättest Du Beispiele gefunden wo A und [mm] \neg [/mm] A  gilt .




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]