www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichungen
Ungleichungen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Beweis
Status: (Frage) beantwortet Status 
Datum: 17:51 Sa 25.10.2008
Autor: Pingsuxx

Aufgabe
Es seien positive reelle Zahlen x, y mit [mm] y² < x [/mm] gegeben. Weisen Sie nach, dass eine reelle Zahl z mit [mm] z > y [/mm] und [mm] z² < x [/mm]exsistiert.

Hi Leute,

Ich hoffe ihr könnt mir bei der Aufgabe helfen. Bis jetzt habe ich mir überlegt, dass aus [mm] z > y [/mm] und [mm] x > y² [/mm] folgen muss, dass [mm] z² > y² [/mm] ist, da z auch eine postive reelle Zahl sein muss.

Daraus folgt dann [mm] y² < z² < x \to z²-y² < x - y² [/mm] , aber dann weiß ich nicht mehr so recht weiter.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 25.10.2008
Autor: koepper

Hallo,

> Es seien positive reelle Zahlen x, y mit [mm]y² < x[/mm] gegeben.
> Weisen Sie nach, dass eine reelle Zahl z mit [mm]z > y[/mm] und [mm]z² < x [/mm]exsistiert.
>  

betrachte $z = [mm] \sqrt{\frac{y^2 + x}{2}}$ [/mm]

LG
Will

Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Sa 25.10.2008
Autor: Pingsuxx

Danke für deine schnelle Antwort, aber ich kann damit nicht wirklich viel anfangen. Wie biste darauf gekommen?
Ich sollte vllt auch dazu sagen, dass ich nciht wirklich die Ahnung davon habe.

Bezug
                
Bezug
Ungleichungen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 02:22 So 26.10.2008
Autor: leduart

EDIT: die Bemerkung unten ist dumm und falsch.
leduart

Hallo
Du meinst wohl  [mm] \wurzel{(x-y^2)/2} [/mm]
nicht die Summe.
Gruss leduart

Bezug
                        
Bezug
Ungleichungen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 15:08 So 26.10.2008
Autor: koepper

Hallo leduart,

nein ich meinte die Summe, genau so wie sie dort steht.
Mit diesem z ist die Existenz konstruktiv gezeigt, denn dieses z hat die geforderten Eigenschaften, wie sich leicht überprüfen läßt.

LG
Will

Bezug
                
Bezug
Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 So 26.10.2008
Autor: leduart

Hallo Will
sorry fuer meine dumme Korrektur Du hast natuerlich - wie immer- recht.
gruss leduart

Bezug
        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:18 So 26.10.2008
Autor: leduart

Hallo
Du brauchst das Archimedes axiom in der form: Wenn eine Zahl kleiner als jedes 1/n ist ist sie 0.
du hast aber [mm] 0)0 [/mm]
jetzt solltest du ein z finden, das dazwischen liegt.
man muss sich nur klar machen , dass a<b bedeutet es gibt einen Unterschied zwischen a und b, der groesser 0 ist.
man kann also zwischne a und b noch was "reinqutschen, z. bsp r/2 oder sowas.
Gruss leduart

Bezug
        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 26.10.2008
Autor: Pingsuxx

Hallo,

würde es denn nicht reichen, wenn ich von den oberen Ungleichungen herleite, das [mm] z^{2}-y^{2} < x - y^{2} [/mm] und dann einfach sage + y² und [mm] z^{2} < x [/mm] übrig bleiben würde???

und für [mm]z > y[/mm] eben dann [mm]z - x > y - x [/mm] und dann wieder +x

Bezug
                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 So 26.10.2008
Autor: leduart

Hallo
Deine Beschreibung ist sehr skizzenhaft. d.h. ich versteh sie wohl nicht ganz. Du solltest das vielleicht so aufschreiben, wie dus in ner Uebung abgeben wuerdest, erst dann kann ich beurteilen, was du genau meinst.
du musst doch die Existenz eines z angeben. wenn man dafuer direkt eine methode angibt, also ne Formel die aus den Vors. folgt ist das sicher der einfachste Weg. Wie gesagt, ob dein weg richtig ist kann ich nicht beurteilen. irgendwo muesste dann auf jeden fall stehen: daraus folgt die Existenz eines z>0
Gruss leduart

Bezug
                        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 So 26.10.2008
Autor: Pingsuxx

Ich habe mir einfach überlegt, dass aus y² < x, z > y und z² < x folgen muss, das x > y² > z² und das aus z > y folgen muss, weil es sich um postive reelle Zahlen handelt, z² > y² und aus den ganzen Ungleichungen kann man doch einfach die beiden Ungleichungen von mir erschließen, durch logisches Überlgen.

Nun weiß ich aber eben nicht, ob das als Beweis ausreichend ist.
wenn ich dann am ende auf z>y komme, heißt das ja ebenfalls z>0, da y nicht negativ sein kann.

Bezug
                                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 So 26.10.2008
Autor: leduart

Hallo
> Ich habe mir einfach überlegt, dass aus y² < x, z > y und
> z² < x folgen muss, das x > y² > z²

aus z>y folgt sicher nicht [mm] z^2
> und das aus z > y
> folgen muss, weil es sich um postive reelle Zahlen handelt,
> z² > y² und aus den ganzen Ungleichungen kann man doch
> einfach die beiden Ungleichungen von mir erschließen, durch
> logisches Überlgen.

falls man das durch logisches Ueberlegen hinkriegt sollte man die Ueberlegungen aufschreiben oder formalisieren koennen. "Ist doch logisch" ist sicher kein math. Argument, dazu gehoert immer denn aus .... folgt... usw.
ausserdem steht da ne falsche Ungleichung.

>  
> Nun weiß ich aber eben nicht, ob das als Beweis ausreichend
> ist.

es ist einfach noch kein Beweis.

>  wenn ich dann am ende auf z>y komme, heißt das ja
> ebenfalls z>0, da y nicht negativ sein kann.

Das z>0 ist nicht das Problem. dass es kein z<0 gibt ist klar!
Koeppers Idee ist die beste, du musst nur zeigen, dass sein z alle Bedingungen erfuellt
fang damit an [mm] y^2 Gruss leduart


Bezug
                                        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 So 26.10.2008
Autor: Pingsuxx


> Hallo
>  > Ich habe mir einfach überlegt, dass aus y² < x, z > y

> und
> > z² < x folgen muss, das x > y² > z²
>  aus z>y folgt sicher nicht [mm]z^2
>  > und das aus z > y

> > folgen muss, weil es sich um postive reelle Zahlen handelt,
> > z² > y² und aus den ganzen Ungleichungen kann man doch
> > einfach die beiden Ungleichungen von mir erschließen, durch
> > logisches Überlgen.

Ja, sry da habe ich mich verschrieben, ich meinte [mm] x>z²>y²[/mm].

Ok, wenn du meinst, dass von Koeppert die Lösung der beste Weg ist, dann versuch ich es damit. Bloß versteh ich seinen Ansatz nicht.

y² < x , ok + x ergäbe dann nach Umformungen [mm] \bruch{y^{2}+x}{2} < x [/mm], aber was bringt mir das jetzt ?



Bezug
                                                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 So 26.10.2008
Autor: leduart

Hallo

>  
> y² < x , ok + x ergäbe dann nach Umformungen
> [mm]\bruch{y^{2}+x}{2} < x [/mm], aber was bringt mir das jetzt ?

Na du hast schon mal ein [mm] z^2 Da du auch noch was selbst tun willst musst du nur noch zeigen, dass auch z>y gilt.
Gruss leduart
  


Bezug
                                                        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 So 26.10.2008
Autor: Pingsuxx

ok, also für z > y  :

y < x  das mit  + y wird zu [mm] y < \bruch{x+y}{2} [/mm]

richtig?

Bezug
                                                                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 So 26.10.2008
Autor: leduart

Hallo
Das ist nicht falsch, aber du willst doch [mm] z=\wurzel{(x+y^2)/2} [/mm]
was hilft dir das dabei?
Gruss leduart

Bezug
                                                                        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 So 26.10.2008
Autor: Pingsuxx

tja, das ist ne gute frage, aber was hilft mir wenn ich sage  [mm] \bruch{y^{2}+x}{2} < x [/mm]

irgendwie versteh ich den zusammenhang zwischen [mm] z² < x[/mm]  und  [mm]\bruch{y^{2}+x}{2} < x [/mm] nicht

Bezug
                                                                                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 So 26.10.2008
Autor: leduart

Hallo
Du suchst ein z fuer das gilt z,x und [mm] z^2>y^2 [/mm]
Koepper hat dir eins angegeben.
Du hast schon gezeigt, dass fuer das z von koepper gilt [mm] z^2 jetzt musst du noch fuer dasselbe z zeigen, dass auch gilt [mm] y^2 Dazu benutzt du als Ausgang wieder das bekannte [mm] y^2 Gruss leduart

Bezug
                                                                                        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 So 26.10.2008
Autor: Pingsuxx

Ok, sry aber das check ich einfach nicht...
was hat denn  [mm]z = \sqrt{\frac{y^2 + x}{2}}[/mm]
mit dem [mm]\bruch{y^{2}+x}{2} < x[/mm] zu tun

kann ich für das< x in [mm]\bruch{y^{2}+x}{2} < x[/mm] einfach <z² einsetzen und die wurzel ziehen, aber warum hab ich dann bewiesen, dass z² > y² gilt?

Ich habe so einen Nachweis bis jetzt noch nie gemacht und das einzige Beispiel kam in einer Vorlesung, aber das war ziemlich anders als das hier.

Bezug
                                                                                                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 So 26.10.2008
Autor: leduart

Hallo
o k ich mach dir den Beweis vor.
Vors, [mm] y^2 Beh es existiert ein z mit z>y und [mm] z^2 Beweis: ich zeige, dass die reelle Zahl [mm] z=\wurzel{y^2+x)/2} [/mm] die bedingung fuer z erfuellt. dass es ne relle zahl ist ist klat.
Dazu muss ich zeigen:
1. [mm] z^2 aus [mm] y^2(y^2+x)/2
2. z>y also [mm] \wurzel{y^2+x)/2}>y [/mm]
es gilt [mm] x>y^2 [/mm]  daraus folgt [mm] x+y^2>y^2+y^2<==> (x+y^2)/2>y^2 [/mm]
da |wurzel{} eine monotone fkt ist kann ich auf beiden Seiten die Wurzel ziehen
also ==> [mm] \wurzel{y^2+x)/2}>y [/mm]

Kannst du den Beweis jetzt nachvollziehen?
Kannst du dann auch sagen, woran du trotz der tips gescheitert bist?
(auch Helfer wollen lernen)
Gruss leduart

Bezug
                                                                                                        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 So 26.10.2008
Autor: Pingsuxx


> Hallo
>  o k ich mach dir den Beweis vor.
>  Vors, [mm]y^2
> Beh es existiert ein z mit z>y und [mm]z^2
>  Beweis: ich zeige, dass die reelle Zahl
> [mm]z=\wurzel{y^2+x)/2}[/mm] die bedingung fuer z erfuellt. dass es
> ne relle zahl ist ist klat.

ok daran hängt es, woher weißt du, dass [mm]z=\wurzel{y^2+x)/2}[/mm] ist und nicht irgendetw. anderes

>  Dazu muss ich zeigen:
>  1. [mm]z^2
>  aus [mm]y^2(y^2+x)/2
>  
> 2. z>y also [mm]\wurzel{y^2+x)/2}>y[/mm]
>  es gilt [mm]x>y^2[/mm]  daraus folgt [mm]x+y^2>y^2+y^2<==> (x+y^2)/2>y^2[/mm]
>  
> da |wurzel{} eine monotone fkt ist kann ich auf beiden
> Seiten die Wurzel ziehen
>  also ==> [mm]\wurzel{y^2+x)/2}>y[/mm]

>  
> Kannst du den Beweis jetzt nachvollziehen?

der Beweis ist mir klar

>  Kannst du dann auch sagen, woran du trotz der tips
> gescheitert bist?

wenn ich jetzt mal von dem [mm]z=\wurzel{y^2+x)/2}[/mm]  absehe, bin ich nicht gleich auf die idee gekommen, den Wurzelausdruck von oben mit hilfe von x > y² zu bilden. Ich habe eben sowas in der Form noch nie bewiesen, deshalb war mir auch nicht klar wie der Beweis aussehen muss.


Bezug
                                                                                                                
Bezug
Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 So 26.10.2008
Autor: Pingsuxx

Achso, klar [mm]z=\wurzel{y^2+x)/2}[/mm] ist eine Zahl zwischen y² und x und z² liegt ja zwischen den beiden, ok verstanden :)

danke für die Hilfe leduart [ok]

Bezug
                                                                                                                
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 So 26.10.2008
Autor: koepper

Hallo,

> ok daran hängt es, woher weißt du, dass [mm]z=\wurzel{y^2+x)/2}[/mm]
> ist und nicht irgendetw. anderes

die Idee besteht darin, [mm] $z^2$ [/mm] als arithmetisches Mittel zwischen [mm] $y^2$ [/mm] und x zu wählen.
Da [mm] $z^2$ [/mm] zwischen beiden liegt und [mm] $y^2 [/mm] < x$ gilt, ist dann [mm] $y^2 [/mm] < [mm] z^2 [/mm] < x$ und wegen der Positivität von y folgt y < z.

LG
Will

Bezug
                        
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 So 26.10.2008
Autor: Pingsuxx

Ist das nun ein ausreichender Beweis dafür, dass z unter diesen Bedingungen exsistiert, oder nicht ( siehe Mitteilung für Lösungsweg)???

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]