www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Ungleichung zeigen
Ungleichung zeigen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Do 27.08.2009
Autor: pinclady

Aufgabe
[mm] u_n(i) \in [/mm] [0,1] , [mm] p\in [/mm] (0,1) und q=1-p; N und i sind natürliche Zahlen. [mm] u_n [/mm] ist folgendermaßen definiert

[mm] u_n(i)=\begin{cases} pu_{n-1}(2i), & \mbox{für } i \le N/2 \\ p+qu_{n-1}(2i-N), & \mbox{für } i \ge N/2 \end{cases} [/mm]

Mit [mm] u_n(0)=0,u_n(N)=1, n\ge [/mm] 0 und [mm] u_0(i)=0, [/mm] i<N
z.z. [mm] u_{n+1}(r)-pu_n(r+s)-qu_n(r-s)\ge [/mm] 0 [mm] s\le [/mm] min(r,N-r)  (*)


Hallo Zusammen,
ich hoffe sehr, dass  mir jemand bei dieser Aufgabe helfen kann.

Der Beweis von der Ungleichung (*) ist ein Induktionsbeweis und ich habe I.A. und  bestimmte Fälle schon gemacht. Aber ich komme an einer Stelle nicht weiter

-Falls r-s [mm] \le [/mm] N/2 [mm] \le [/mm] r gilt unter der Ausnutzung der Definition von u:
[mm] u_{n+1}(r)-pu_n(r+s)-qu_n(r-s)=p+qu_{n}(2r-N)-p(p+qu_{n-1}(2r+2s-N))-qpu_{n-1}(2r-2s)) [/mm]
So, nun habe ich versucht die Gleichung so zuverändern, dass Induntions-Voraussetzung da steht. Dann könnte ich sagen, dass sie nach I.V. [mm] \ge [/mm] 0 ist.
Aber es gelingt mir leider nicht. Villeicht hat jemand von euch eine Idee.
Danke für eure Mühe in Voraus.
Grüße


        
Bezug
Ungleichung zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 27.08.2009
Autor: pinclady

Hat denn überhaupt niemand hierzu eine Idee?


Bezug
        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:27 Sa 29.08.2009
Autor: felixf

Hallo!

> [mm]u_n(i) \in[/mm] [0,1] , [mm]p\in[/mm] (0,1) und q=1-p; N und i sind
> natürliche Zahlen. [mm]u_n[/mm] ist folgendermaßen definiert
>
> [mm]u_n(i)=\begin{cases} pu_{n-1}(2i), & \mbox{für } i \le N/2 \\ p+qu_{n-1}(2i-N), & \mbox{für } i \ge N/2 \end{cases}[/mm]
>  
> Mit [mm]u_n(0)=0,u_n(N)=1, n\ge[/mm] 0 und [mm]u_0(i)=0,[/mm] i<N
>  z.z. [mm]u_{n+1}(r)-pu_n(r+s)-qu_n(r-s)\ge[/mm] 0 [mm]s\le[/mm] min(r,N-r)  
> (*)

Die Aussage (*) stimmt nicht!

Beispiel: $N = 5$

[mm] $\begin{tabular}{c|ccc} i & u_0(i) & u_1(i) & u_2(i) \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & p^2 \\ 3 & 0 & p & 0 \\ 4 & 0 & p & p (1 + q) \\ 5 & 1 & 1 & 1\end{tabular}$ [/mm]

Fuer $n = 1$, $r = 3$ und $s = 1$ gilt nun [mm] $u_{n+1}(r) [/mm] - p [mm] u_n(r [/mm] + s) q [mm] u_n(r [/mm] - s) = 0 - p [mm] \cdot [/mm] p - q [mm] \cdot [/mm] 0 = [mm] -p^2 [/mm] < 0$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]