www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung zeigen
Ungleichung zeigen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Mo 19.11.2007
Autor: MaRaQ

Aufgabe
Zeigen sie durch eine geeignete Abschätzung:

[mm] \bruch{1-y}{1+ny} \le \bruch{1}{1+n+ny} [/mm]

Hierbei soll n eine beliebige natürliche Zahl sein und 0<y<1 eine reelle Zahl.

So, hier komme ich überhaupt nicht weiter. Hat jemand eine Idee, wie man das abschätzen könnte?

Ich habe versucht, den ersten Bruch zu zerlegen, aber mit

[mm] \bruch{1}{1+ny} [/mm] - [mm] \bruch{y}{1+ny} \le \bruch{1}{1+ny} [/mm] (da [mm] \bruch{y}{1+ny} [/mm] > 0) sitze ich zum Beispiel schon in der Sackgasse, da mein Ergebnis nach dieser Ungleichung offensichtlich bereits größer als das gewünschte Resultat meiner "kleiner"-Abschätzung ist...

Um es kurz zu machen, auch wenn obige Ungleichung offensichtlich gilt, schaffe ich es wegen des y im Nenner der rechten Gleichung nicht, dies formal zu zeigen/abzuschätzen...



        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Mo 19.11.2007
Autor: angela.h.b.


> Zeigen sie durch eine geeignete Abschätzung:
>
> [mm]\bruch{1-y}{1+ny} \le \bruch{1}{1+n+ny}[/mm]
>  
> Hierbei soll n eine beliebige natürliche Zahl sein und
> 0<y<1 eine reelle Zahl.
>  So, hier komme ich überhaupt nicht weiter. Hat jemand eine
> Idee, wie man das abschätzen könnte?[...]

> Um es kurz zu machen, auch wenn obige Ungleichung
> offensichtlich gilt, schaffe ich es wegen des y im Nenner
> der rechten Gleichung nicht, dies formal zu
> zeigen/abzuschätzen...

Hallo,

ich fürchte, es wird Dir nicht gelingen:

die Ungleichung stimmt ja nicht.

Mit n=5 und y=0.1 erhältst Du

[mm] \bruch{1-y}{1+ny}=\bruch{0.9}{1.5}=0.6 [/mm]

und

[mm] \bruch{1}{1+n+ny}=\bruch{1}{6.5}= [/mm] 0.15.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]