www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Ungleichung mit Infimum
Ungleichung mit Infimum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Do 04.07.2013
Autor: marianne88

Guten Tag

Wir haben in unserem Kurs eine Beweisskizze erhalten und ich wollte diese gerne präzise vervollständigen. Dabei sind ein paar kleine Fragen aufgetaucht und ich wäre dankbar, wenn jemand sagen könnte ob meine Argumentation richtig ist. Grundsätzlich haben wir einen Wahrscheinlichkeitsraum [mm] $(\Omega,\mathcal{A},P)$ [/mm] gegeben.

Es sei eine Menge $K$ von Wahrscheinlichkeitsmassen gegeben, welche alles absolut stetig bezüglich einem ursprünglichen Wahrscheinlichkeitsmass $P$ sind. Es geht um folgende Implikation:

1. Es existiert ein [mm] $\delta [/mm] >0 $, wenn  immer ein [mm] $A\in\mathcal{A}$ [/mm] mit [mm] $P(A)\le \delta [/mm] $ gilt [mm] $\inf_{Q\in K} [/mm] Q[A]=0$

2. für  alle Zufallsvariablen [mm] $Y\ge [/mm] 0$ giltL [mm] $\lim_{n\to \infty}\inf_{Q\in K}E_Q[Y\wedge n]<\infty$ [/mm] wobei $a [mm] \wedge [/mm] b$ das Minimum von $a$ und $b$ bezeichnet.

Ich will [mm] $2)\Rightarrow [/mm] 1)$ zeigen.

Der Beweis soll durch Kontraposition geführt werden. Hier kommt meine erste Frage, wieso ist die Kontraposition zu $1)$: Wenn $1).$ nicht gilt, gibt es eine Folge von Mengen [mm] $(A_n)\subset\mathcal{A}$ [/mm] mit [mm] $P(A_n)\le 2^{-n}$ [/mm] und [mm] $\gamma_n:=\inf_{Q\in K} Q[A_n]>0$.? [/mm]

Danach definiere ich [mm] $Y:=\sum_{n=1}^\infty \frac{n}{\epsilon_n}\mathbf1_{A_n}$. [/mm] Es wird behauptet, dass dies wohldefiniert sei. Hier wende ich Borel-Cantelli an und sehe, dass die Summe jeweils eine endliche Summe ist.

Nun wird [mm] $l_n:=\frac{n}{\epsilon_n}$ [/mm] gesetzt. Danach folgt eine Ungleichungskette:

[mm] $\lim_{k\to \infty}\inf_{Q\in K}E_Q[Y\wedge k]\ge \inf_{Q\in K}E_Q[Y\wedge l_n]\ge \frac{n}{\epsilon_n}\inf_{Q\in K}Q(A_n)=n$ [/mm]

Die bereit mir besonders Mühe. Ich muss sicherlich die Definition von $Y$ verwenden, aber mein Problem ist, dass ich ja nicht weiss, welche Terme in der Summe verschwinden. Für die erste Ungleichung würde ich gerne $k$ mittel [mm] $l_n$ [/mm] nach unten abschätzen. Aber es gilt ja nicht für alle $n$, dass [mm] $\frac{n}{\epsilon_n}\le [/mm] k$.
Wieso sind also diese beiden Ungleichungen richtig?

Es wäre wirklich nett, wenn mir jemand helfen könnten. Ich danke euch für die Hilfe.

Liebe Grüsse

marianne88

        
Bezug
Ungleichung mit Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Do 04.07.2013
Autor: steppenhahn

Hallo Marianne,

> Guten Tag
>  
> Wir haben in unserem Kurs eine Beweisskizze erhalten und
> ich wollte diese gerne präzise vervollständigen. Dabei
> sind ein paar kleine Fragen aufgetaucht und ich wäre
> dankbar, wenn jemand sagen könnte ob meine Argumentation
> richtig ist. Grundsätzlich haben wir einen
> Wahrscheinlichkeitsraum [mm](\Omega,\mathcal{A},P)[/mm] gegeben.
>
> Es sei eine Menge [mm]K[/mm] von Wahrscheinlichkeitsmassen gegeben,
> welche alles absolut stetig bezüglich einem
> ursprünglichen Wahrscheinlichkeitsmass [mm]P[/mm] sind. Es geht um
> folgende Implikation:
>  
> 1. Es existiert ein [mm]\delta >0 [/mm], wenn  immer ein
> [mm]A\in\mathcal{A}[/mm] mit [mm]P(A)\le \delta[/mm] gilt [mm]\inf_{Q\in K} Q[A]=0[/mm]
>  
> 2. für  alle Zufallsvariablen [mm]Y\ge 0[/mm] giltL [mm]\lim_{n\to \infty}\inf_{Q\in K}E_Q[Y\wedge n]<\infty[/mm]
> wobei [mm]a \wedge b[/mm] das Minimum von [mm]a[/mm] und [mm]b[/mm] bezeichnet.
>  
> Ich will [mm]2)\Rightarrow 1)[/mm] zeigen.
>
> Der Beweis soll durch Kontraposition geführt werden. Hier
> kommt meine erste Frage, wieso ist die Kontraposition zu
> [mm]1)[/mm]: Wenn [mm]1).[/mm] nicht gilt, gibt es eine Folge von Mengen
> [mm](A_n)\subset\mathcal{A}[/mm] mit [mm]P(A_n)\le 2^{-n}[/mm] und
> [mm]\gamma_n:=\inf_{Q\in K} Q[A_n]>0[/mm].?


Die Aussage in 1 lautet:

[mm] $\exists \delta [/mm] > 0 [mm] \forall [/mm] A [mm] \in \mathcal{A}: \IP(A) \le \delta \Rightarrow \inf_{Q\in K} [/mm] Q[A]=0$.

Negation (beachte: [mm] $\neg(A \Rightarrow [/mm] B) = A [mm] \mbox{ und }\neg [/mm] B$)

[mm] $\forall \delta [/mm] > 0 [mm] \exists [/mm] A [mm] \in \mathcal{A}: \IP(A) \le \delta \mbox{ und } \inf_{Q\in K} [/mm] Q[A] > 0$.

D.h. du kannst für die [mm] $\delta [/mm] = [mm] 2^{-n}$ [/mm] nacheinander jeweils ein [mm] $A_n$ [/mm] bekommen mit [mm] $\IP(A_n) \le \delta [/mm] = [mm] 2^{-n}$ [/mm] und [mm] $\inf_{Q\in K} Q[A_n] [/mm] > 0$.

---

Ab jetzt steht hier ein [mm] $\epsilon_n$. [/mm]  Meinst du damit evtl. das [mm] $\gamma_n$ [/mm] von oben??


> Danach definiere ich [mm]Y:=\sum_{n=1}^\infty \frac{n}{\epsilon_n}\mathbf1_{A_n}[/mm].
> Es wird behauptet, dass dies wohldefiniert sei. Hier wende
> ich Borel-Cantelli an und sehe, dass die Summe jeweils eine
> endliche Summe ist.
>
> Nun wird [mm]l_n:=\frac{n}{\epsilon_n}[/mm] gesetzt. Danach folgt
> eine Ungleichungskette:
>  
> [mm]\lim_{k\to \infty}\inf_{Q\in K}E_Q[Y\wedge k]\ge \inf_{Q\in K}E_Q[Y\wedge l_n]\ge \frac{n}{\epsilon_n}\inf_{Q\in K}Q(A_n)=n[/mm]
>  
> Die bereit mir besonders Mühe. Ich muss sicherlich die
> Definition von [mm]Y[/mm] verwenden, aber mein Problem ist, dass ich
> ja nicht weiss, welche Terme in der Summe verschwinden.
> Für die erste Ungleichung würde ich gerne [mm]k[/mm] mittel [mm]l_n[/mm]
> nach unten abschätzen. Aber es gilt ja nicht für alle [mm]n[/mm],
> dass [mm]\frac{n}{\epsilon_n}\le k[/mm].


Wichtig ist, dass die Ungleichungskette für FESTES n untersucht wird.
Und für festes n gibt es $k [mm] \in \IN$, [/mm] so dass $k [mm] \ge l_n$ [/mm] gilt. Die linke Seite wächst monoton in $k$. Daher die erste Ungleichung.

Für die zweite Ungleichung schauen wir uns $Y [mm] \wedge l_n$ [/mm] an:

$Y [mm] \wedge l_n =\sum_{l=1}^\infty \left(\frac{l}{\epsilon_l} \wedge l_n\right)\mathbf1_{A_l}$. [/mm]

Jeder Summand ist sicher [mm] $\ge [/mm] 0$, aber für $l = n$ steht da:
[mm] $\left(\frac{n}{\epsilon_n} \wedge l_n\right)\mathbf1_{A_n} [/mm] = [mm] \frac{n}{\epsilon_n}\mathbf1_{A_n}$. [/mm]

Also gilt $Y [mm] \wedge l_n \ge \frac{n}{\epsilon_n}\mathbf1_{A_n}$. [/mm]

Das wird in der zweiten Ungleichung benutzt.


Viele Grüße,
Stefan

Bezug
                
Bezug
Ungleichung mit Infimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:43 Fr 05.07.2013
Autor: marianne88

Guten Tag Stephan

Super, danke für deine Hilfe! Ja genua, [mm] $\epsilon_n$ [/mm] sollte [mm] $\gamma_n$ [/mm] sein. Entschuldige den Fehler. Du hast mir sehr geholfen. Nochmals Danke.

Liebe Grüsse

marianne88

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]