www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - Ungleichung für a,b,c,d aus R
Ungleichung für a,b,c,d aus R < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung für a,b,c,d aus R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Fr 02.04.2010
Autor: MatheChris84

Aufgabe
[mm]
max \left\{ \frac{a}{b}, \frac{c}{d}\right\} \geq \frac{a+c}{b+d} \geq min \left\{ \frac{a}{b}, \frac{c}{d}\right\}[/mm]

für

[mm] a,b,c,d > 0, a,b,c,d \in \mathbb R [/mm]

Hallo,

ich grüble schon etwas länger über dieser Aufgabe. Mittlerweile sieht mein Ansatz so aus, dass man folgendes behauptet/beweist:

[mm]
\frac{a}{b} \geq \frac{c}{d} \Rightarrow \frac{a}{b} \geq \frac{a+c}{b+d} \geq \frac{c}{d}
[/mm]

Allerdings bin ich mir noch nicht sicher, wie ein sauberer Beweis nun auszusehen hat. Aus der Annhame, dass a,b,c,d > 0 gilt würde ich folgern, dass auch b(b+d)d > 0 ist, was man dazu benutzen könnte, um die Nenner der einzelnen Brüche wegzubekommen. Rein von der Logik und den Testfällen her leuchtet es mir ein, dass der Sachverhalt gilt, jedoch hackt es etwas beim Beweis. Könntet ihr mir dabei helfen oder zumindest Denkanstöße geben?

Viele Grüße
Christoph

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.matheboard.de/thread.php?threadid=415512]

        
Bezug
Ungleichung für a,b,c,d aus R: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Fr 02.04.2010
Autor: abakus


> [mm]
max \left\{ \frac{a}{b}, \frac{c}{d}\right\} \geq \frac{a+c}{b+d} \geq min \left\{ \frac{a}{b}, \frac{c}{d}\right\}[/mm]

>  
> für
>  
> [mm] a,b,c,d > 0, a,b,c,d \in \mathbb R [/mm]
>  Hallo,
>  
> ich grüble schon etwas länger über dieser Aufgabe.
> Mittlerweile sieht mein Ansatz so aus, dass man folgendes
> behauptet/beweist:
>  
> [mm]
\frac{a}{b} \geq \frac{c}{d} \Rightarrow \frac{a}{b} \geq \frac{a+c}{b+d} \geq \frac{c}{d}
[/mm]

>  
> Allerdings bin ich mir noch nicht sicher, wie ein sauberer
> Beweis nun auszusehen hat. Aus der Annhame, dass a,b,c,d >
> 0 gilt würde ich folgern, dass auch b(b+d)d > 0 ist, was
> man dazu benutzen könnte, um die Nenner der einzelnen
> Brüche wegzubekommen.

Hallo,
es ist gut, dass du dir Gedanken über einen SAUBEREN Beweis machst.
Der Weg ihn zu finden darf aber ruhig unsauber sein.
Nimm mal an, die Behauptung gilt tatsächlich.
Der vordere Teil der Kettenungleichung lautet
[mm] \frac{a}{b} \geq \frac{a+c}{b+d} [/mm]
Das lässt sich durch Multlikation mit beiden Nennern umformen zu
a(b+d)  [mm] \geq [/mm]  b(a+c) und weiter zu
ab+ad  [mm] \geq [/mm]  ab+bc
ad  [mm] \geq [/mm]  bc, und das teilst du durch bd:
[mm] \frac{a}{b} \geq \frac{c}{d} [/mm] .
Somit kommen wir von der Behauptung zur Voraussetzung.
Das war die Beweisfindung.
Für einen sauberen Beweis musst du diesen Weg einfach umkehren.
Es geht also los mit
"Aus  [mm] \frac{a}{b} \geq \frac{c}{d} [/mm]  folgt durch Multiplikation mit bd..."
Entsprechend kannst du auch beim hinteren Teil der Ungleichungskette vorgehen.
Gruß Abakus



> Rein von der Logik und den
> Testfällen her leuchtet es mir ein, dass der Sachverhalt
> gilt, jedoch hackt es etwas beim Beweis. Könntet ihr mir
> dabei helfen oder zumindest Denkanstöße geben?
>  
> Viele Grüße
>  Christoph
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  [http://www.matheboard.de/thread.php?threadid=415512]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]